Uncategorized


MENSTRUAL MIGRAINE TREATMENT TIPS AND CONTRACEPTION STROKE RISK

BACKGROUND

Migraine is estimated to effect about 18% of women and 6% of men. That is a 3:1 ratio. Much of that uneven ratio is due to the hormonal influence of migraine in women, particularly estrogen. Even more specifically, it is the drop in estrogen during the menstrual cycle which is the most common culprit for menstrually-related migraine (migraines during menses and outside of menses) and menstrual migraine (migraines during menses only).

Let’s first talk about some basic oral contraceptive facts. Estrogen and progestin are the components in combination oral contraceptives (COC). In most COCs, the estrogen is ethinyl estradiol (some older ones use mestranol). Most COCs nowadays are low dose COCs (35 mcg (micrograms) or less of ethinyl estradiol), which has less risk of thromboembolic (blood clot) events.

Combined hormonal contraception (CHC) also come as patches (Ortho Evra) and vaginal rings (Nuvaring). Patch users may be exposed to 60% more estrogen than in a 35 mcg ethinyl estradiol oral contraceptive, levels may not remain steady and peak values may be lower. The vaginal ring delivers 15 mcg ethinyl estradiol and 120 mcg etonogestrel, and is replaced every 4 weeks.

Contraceptive doses of hormones suppress ovarian function, prevent ovulation and pregnancy, and often provide “supraphysiologic” doses of hormones.

Hormonal therapy (such as ethinyl estradiol 20 mcg): do not suppress ovarian function, do not prevent pregnancy, and are for more physiologic doses. They are meant as estrogen replacement. Endogenous ovarian hormonal production is typically still occurring.

 

CONTRACEPTION ADJUSTMENT HACKS TO LESSEN MENSTRUAL MIGRAINE

Most menstrual migraines occur in association with the drop in estrogen during the menstrual cycle. This occurs just prior to ovulation, at the end of the luteal phase if pregnancy does not occur, and during the placebo pill of oral contraceptives. It is recommended to use a monophasic pill containing 35 mcg or less of ethinyl estradiol (20-35 mcg of ethinyl estradiol is typical for most common formulations). Some data suggest 20 mcg pills may not sufficiently suppress ovulation. For women over 160 lbs, the 35 mcg ethinyl estradiol pills will be more protective than those with less than 35 mcg.

Here are a few options (certainly not an all-inclusive list) to discuss with your doctor to try to decrease menstrual migraine with combined hormonal contraception adjustments if you are using oral contraceptives:

 

1) Continuous extended release contraception:

-Cycle off to have withdrawal bleeding only as needed. Most commonly this is done every 3 months.

-Seasonale (levonorgestrel 150 mcg, ethinyl estradiol 30 mcg): 12 weeks of active contraceptive pill, followed by 1 week of placebo. This essentially results in 4 yearly menstrual cycles.

-Lybrel (levonorgestrel 90 mcg, ethinyl estradiol 20 mcg): active contraceptive pill taken continuously with no placebo intervals.

 

2) Add-back estrogen the week of placebo to minimize drop in estradiol:

-Mircette (desogestrel 150 mcg, ethinyl estradiol): 3 weeks of 20 mcg ethinyl estradiol; 2 days placebo; 5 days of 10 mcg ethinyl estradiol.

-Seasonique: Continuous extended-release oral contraceptive pill of 30 mcg ethinyl estradiol for 12 weeks followed by 1 week of low dose ethinyl estradiol 10 mcg.

-Ethinyl estradiol 10 mcg patch during placebo week.

 

3) Extended dosing regimens:

-Yaz (drospirenone 3000 mcg, ethinyl estradiol 20 mcg): 24 active oral contraceptive pills followed by 4 days placebo.

-Loestrin 24 (norethindrone 1000 mcg, ethinyl estradiol 20 mccg): 24 active oral contraceptive pills followed by 4 days placebo.

 

STROKE RISK AND RECOMMENDATIONS FOR ORAL CONTRACEPTION IN MIGRAINE

The American College of Obstetricians and Gynecologists (ACOG) and World Health Organization (WHO) recommend against estrogen containing contraception in women who have migraine with aura and are older than 35 years old. You can read about migraine aura here. These organizations have also stated that the use of combination estrogen-progesterone contraception can be considered in women with migraine with aura if they do not smoke, are otherwise healthy without vascular risk factors, and are younger than 35 years old given the low risk.

However, according to the International Headache Society these guidelines are not an absolute and should be taken on a case by case basis with weighing the risks vs. benefits. It is recommended to avoid estrogen containing contraception in women with migraine with aura, along with other cardiovascular (heart disease) and cerebrovascular (stroke) risk factors including smoking, uncontrolled hypertension, diabetes, hyperlipidemia, and hypercoagulable disorders (increased tendency to form blood clots). It is also suggested to avoid in women (and men) with prolonged migraine aura (greater than 60 minutes), migraine with focal neurologic symptoms (such as hemiplegic migraine), and basilar migraine (now known as migraine with brainstem aura).

The baseline risk of stroke in patients with migraine with aura is still very low, although it estimated to be 2 fold that of someone without migraine with aura (it does not appear increased in migraine without aura). This risk is increased further by being female, age less than 45 years old, being a smoker, and using estrogen containing contraceptives. When estrogen containing contraceptives are added to migraine with aura, the stroke risk increases to 6-fold. When estrogen containing contraceptives and smoking are both added to migraine with aura, the stroke risk rockets to 9-fold! So, if you have migraine with aura, you can absolutely NOT be a smoker and use estrogen containing contraception, especially if you are under age 45!!!

The bottom line is if you have typical migraine with aura without any atypical features (for example, aura does not extend more than 60 minutes), are not a smoker, and do not have cardiovascular or cerebrovascular risk factors as mentioned above, estrogen containing contraceptives are not absolute contraindications. However, you and your doctor should ultimately decide whether the benefits outweigh the risks. If these medications are used, the recommendation is to use the lowest dose possible, 35 mcg or less. Higher doses of estrogen have quite clearly been associated with increased stroke risk (many earlier studies showing this connection were done with higher doses such as 50 mcg or more). On the other hand, if you have migraine with aura, are under age 45, and are a smoker, the recommendation would be to avoid any estrogen containing contraception. Lastly, there doesn’t seem to be an increased risk with a progesterone-based pill. So, this is an alternative option to consider if you cannot use estrogen-based contraception, along with the many other non-estrogen options you can discuss with your gynecologist.

 

“MINI-PROPHYLAXIS” HACKS DURING THE MENSTRUAL CYCLE

Lastly, here are a few tricks (but certainly not an all-inclusive list) often used only during the menstrual cycle (after discussing with your doctor) to try to decrease migraine frequency. These are called “mini-prophylaxis” strategies since these medications are used daily, but only around the menstrual cycle, as opposed to a daily continuous preventive medication taken for months at a time (which is always a good option too). The goals of these strategies is use medications that have a longer duration of action (last longer) in hopes of preventing migraine recurrence/return within 24 hours, typical of menstrual migraine, and to target the long duration (often multiple days) commonly seen with menstrual migraines:

 

Naratriptan (Amerge) 1.25 mg twice daily (half of a 2.5 mg tablet) beginning 1-2 days before expected onset of menstrual migraine, and maintained for several days through period. In addition, you may use Naratriptan 2.5 mg for breakthrough migraines, but no more than once daily (2 total doses per 24 hours).

 

Frovatriptan (Frova) 1.25 mg twice daily (half of a 2.5 mg tablet) beginning 1-2 days before expected onset of menstrual migraine, and maintained for several days through period. In addition, you may use Frovatriptan 2.5 mg for breakthrough migraines, but no more than once daily (2 total doses per 24 hours).

 

Naproxen Sodium (Anaprox) 550 mg twice daily beginning 2 days before expected onset of menstrual migraine, and maintained through period. Take with food. In addition, you may use your triptan at earliest sign of breakthrough migraines and may repeat once in 2 hours if needed.

 

Methergine (Methylergonovine) 0.2 mg three to four times daily beginning 2 days before expected onset of menstrual migraine and continuing through cycle.

 

DHE Nasal Spray (Migranal): 1 spray in each nostril by pointing away from face and not sniffing. Then, repeat one spray in each nostril in 15 minutes for a total of 4 sprays per dose. Repeat this dosing twice daily beginning 2 days before expected onset of menstrual migraine, and continue through period.

 

Cafergot (Ergotamine 1 mg/Caffeine 100 mg): 2 tablets at migraine onset, followed by 1 tablet every half hour until relief occurs. Do not take more than 6 tablets per headache attack or 10 tablets in a 7-day period.

 

Ergomar (Ergotamine): 2 mg sublingually followed by 1-2 mg every half hour until relief occurs. Do not exceed 6 mg per day and no more than 10 mg per week.

 

Rizatriptan (Maxalt) 10 mg + Dexamethasone 4 mg at menstrual migraine onset.

 

Nurtec ODT 75 mg starting 1-2 days before start of menstrual migraine and continue once daily for a few days during menses. There is no evidence for this currently and it is not commonly done, but given that Nurtec ODT seems to provide relief for 48 hours with a single dose, it could be worth trying given the long duration and high 24 hour recurrence typically seen in menstrual migraine.

 

Share
Read More

SUPPLEMENTS AND NATURAL TREATMENTS FOR MIGRAINE PREVENTION, EVERYTHING YOU NEED TO KNOW.

 

Worldwide, migraine affects more than 10-12% of the population, with approximately 700 million migraineurs estimated worldwide.1 It is estimated that there are 38 million migraineurs in the US, accounting for 12% of the US population. Migraine affects 18% of women and 6% of men2,3. Nearly 25% of U.S. households include someone with migraine.

 

In 2016, migraine was determined to be the 2nd leading cause of all global disability, and the 2nd leading cause of all neurological disease burden4. Migraine accounts for 50% of all neurologic disability. Furthermore, chronic pain in general is the largest contributor to years lived with disability globally5, and is associated with tremendous negative impacts on social, economic, and personal function.

 

In addition to the attack-related disability, many sufferers live in fear because their migraines disrupt their ability to work, go to school, partake in social activities, or care for their families, and this significantly limits their overall quality of life. More than 90% of migraine sufferers are unable to work or function normally during their attacks. American employers lose more than $20 billion each year as a result of 113 million lost workdays due to migraine.6

 

Migraine treatment is divided into acute and preventive (prophylactic) therapy. Most existing preventive therapies are adopted from anti-epileptic, antidepressant, and antihypertensive medications. However, many of these medications are not well tolerated, resulting in poor compliance. Adherence to oral migraine preventative medication is around 26% at 6 months and declines to 17% at one year.7 This is often due to intolerable side effects. Many patients, due to lack of efficacy of preventative treatments, often resort to overuse of acute medications. This results in additional decline in quality of life and economic burden.8 Onabotulinumtoxin-A is currently the only FDA-approved treatment available for chronic migraine. However, most patients must fail at least three preventative treatments prior to receiving Onabotulinumtoxin-A. As such, Onabotulinumtoxin-A is typically a fourth line option for the prevention of chronic migraine. In addition, it is not approved for patients who have episodic migraine. There are 3 calcitonin gene related peptide (CGRP) antagonists that have been approved for the prevention of migraine. However, the three CGRP monoclonal antibodies resulted in only a modest improvement in headache days (1.3-2.4 fewer migraine days per month) which corresponds to a modest reduction in acute medication use (2-2.5 fewer days per month). There also exists a limited number of neuromodulatory devices. Lack of insurance coverage of these devices precludes their routine use in clinical practice.  This confers a large unmet need for additional preventive migraine treatments and additional therapeutic targets.

 

Migraine prevention is a key aspect to maintaining a good quality of life.  Abnormal neuronal membrane ion channels, low ionized magnesium levels, increased excitatory glutamatergic activity, and mitochondrial dysfunction with abnormal energy metabolism are associated with migraine. The goal of nutraceuticals is to target these factors in order to improve energy metabolism and reduce neuronal hyperexcitability in the brain. Patients often seek complementary and alternative medicine (CAM) for prevention of their headaches after finding standard prescription treatments intolerable due to side effects, or just ineffective. Many patients feel that “natural” substances are less toxic than prescription medications. Thus, the nutraceutical and herbal supplement industry is a multibillion-dollar industry. CAMs include, but are not limited to, nutraceuticals (vitamins and supplements such as magnesium, coenzyme Q10 (CoQ10), vitamin B2 (riboflavin), alpha lipoic acid, vitamin D, 5-HTP, fish oil, melatonin), and herbal preparations (butterbur, feverfew, ginger, and cannabidiol).

 

The use of CAMs has been significantly rising in the US and Europe9–12, and is becoming more evident especially in patients with migraine and other headache disorders. In a recent questionnaire-based survey in Germany and Austria, 81.7% of patients seen in tertiary outpatient headache clinics reported use of CAM13.  There are a multitude of different migraine related supplements on the market with variable combinations or sold separately as the individual components. Below, we discuss the most commonly used and studied supplements for migraine prevention.

 

VITAMINS and SUPPLEMENTS:

  1. Magnesium

Magnesium has a Level B (2nd highest) evidence recommendation for migraine prevention by the American Academy of Neurology and American Headache Society.14 It is also rated highly and recommended by the Canadian Headache Society.15 This is a higher evidence recommendation than many of the prescription medications we use for migraine prevention. More than 325 enzymes are magnesium dependent, many of which are brain enzymes. Magnesium is involved in all reactions that involve the formation and utilization of adenosine-5′-triphosphate (ATP) in energy metabolism16–19. Proper magnesium levels are known to help normalize blood pressure, have anticoagulant, anti-platelet aggregating effects, regulate cell proliferation, protein synthesis, cellular energy and cell membrane stability, as well as blood sugar levels19–21. Studies have shown low levels of brain magnesium22,23 may be a contributor to migraine pathophysiology. Magnesium influences multiple steps in the current understanding of migraine pathophysiology including cortical spreading depression, serotonin receptor activity, neurotransmitter release, interference with inflammatory mediators, nitric oxide production, platelet aggregation, vascular tone, NMDA receptor interaction, production and release of substance P which activates pain fibers24–31. Magnesium is a mineral that functions as a coenzyme for various neurologic functions and other physiologic mechanisms.    According to two double-blind studies, high-dose oral magnesium supplementation appears to be effective in migraine prophylaxis. Trials have shown that magnesium supplementation is very effective in migraine treatment, with migraine attack reductions of up to 42%.32–37 Other studies have also shown benefit in migraine prevention when combined with coenzyme Q10 and feverfew as well.38 Magnesium (250 mg twice a day or 500 mg at bed) has a relaxant effect on smooth muscles such as blood vessels. We often give intravenous magnesium to patients who come into the emergency department for migraine because it helps to break the migraine. Three trials found 40-90% average headache reduction when used as a preventative. Magnesium also demonstrated the benefit in menstrually related migraine. Magnesium is part of the messenger system in the serotonin cascade and it is a good muscle relaxant. Some forms can be useful for constipation which can be a side effect of other medications used to treat migraine. Good sources include nuts, whole grains, and tomatoes.

 

There are different forms of magnesium, and we’ll discuss the most common types. Magnesium types can be tailored to patient characteristics as follows.39 Magnesium glycinate is a good choice for those with a sensitive stomach who have gastrointestinal side effects such as diarrhea with other forms of magnesium. It is anecdotally also helpful with anxiety and sleep. Magnesium threonate also has low risk of gastrointestinal side effects and anecdotally helpful with cognitive function and brain fog symptoms. Magnesium malate has low gastrointestinal side effects and is reportedly more energizing and anecdotally often helpful in fibromyalgia and chronic fatigue syndrome. Magnesium citrate is one of the most studied, popular, and well-absorbed forms of magnesium. It can also be mixed easily with liquids if you can’t take pills. However, it comes with a higher risk of diarrhea and gastrointestinal side effects, although this could be helpful for those with constipation. Magnesium oxide is also well studied, cheap, and often used for heartburn and indigestion. However, it is not well absorbed and can have some laxative side effects as well, so can also be helpful for constipation.

 

Dosing should generally be somewhere between 400-800 mg daily. It should preferably contain 24 mmol (600 mg) of elemental magnesium daily as magnesium citrate​ based on trials that showed benefit with this specific one more than others, and this is the recommendation of the Canadian Headache Society.15 If this type is not tolerated, other forms of magnesium as discussed above are certainly acceptable.

 

  1. Vitamin D3 (Cholecalciferol)

Vitamin D deficiency is a worldwide problem. Vitamin D is not actually a vitamin, but a hormone that the body makes from a type of cholesterol in the skin when it is exposed to UVB radiation from the sun. Small amounts also come from diet. It has anti-inflammatory activities, analgesic effects, may reduce nitric oxide and assists in magnesium and calcium absorption. Deficiency is suspected to play a role in mechanisms responsible for migraine and other pain syndromes, and vitamin D levels have been shown to be low in chronic migraineurs40. The best form is vitamin D3 (cholecalciferol) anywhere from 1,000 to 4,000 IU daily.

 

  1. 5-HTP (5-Hydroxytryptophan)

This is an amino acid that is made by the body from tryptophan (amino acid you get from your diet), and is involved in mood, sleep, and pain regulation. 5-HTP is typically produced from the seeds of the Griffonia simplicifolia plant. 5-HTP is converted into serotonin (5-hydroxytryptamine), an important brain neurotransmitter involved in migraine pathways and other neurologic pathways. 5-HTP is also converted into melatonin which aids in sleep, as well as dopamine, another important neurotransmitter. The effects of 5-HTP are felt to be similar to the antidepressants that are thought to increase the amount of serotonin available to the brain, and thus a mood enhancing chemical. Some studies have suggested that 5-HTP was as effective as some prescription migraine medications such as propranolol and methysergide (75% improvement in methysergide vs. 71% improvement in 5-HTP) in reducing the frequency and severity of migraines41–45. Side effects can include nausea, diarrhea, and stomach pain, and it should be used cautiously with medications which increase serotonin levels (such as most antidepressants) due to potential risk of serotonin syndrome. Typical doses are around 100–200 mg, 2–3 times per day with meals.

 

  1. Fish oil (Eicosapentaenoic acid (EPA) + Docosahexaenoic acid (DHA))

Fish oils are found in the tissues of fish. They contain a certain type of fat called omega-3. Potential mechanisms for anti-inflammatory effects of fish oil include inhibition of inflammatory mediators (eicosanoids and cytokines), and synthesis of lipid suppressors of inflammation (resolvins)46. Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) give rise to these resolvins which are anti-inflammatory and inflammation resolving47. These compounds may relieve joint pain and stiffness in a similar way as non-steroidal anti-inflammatory drugs (NSAIDs)46,48. One study reported dramatic decreases in headache frequency (15 per month down to 2 per month) and decreases in headache severity (reduction from 5 to 3 on a 7-point scale)49. Fish oils have also been studied and found to be useful in other inflammatory conditions such as rheumatoid arthritis46,48,50–53. Large trials have showed a significant beneficial effect on pain, morning stiffness, number of painful and/or tender joints and NSAID consumption50. Recommended dosing consists of 30% EPA and DHA with a ratio of EPA to DHA of 1.5. Research suggests the minimum dose needed to reduce the joint inflammation associated with arthritis is 2.7 grams of omega-3 (EPA + DHA) daily, which could also be divided such as 900 mg EPA and 450 mg DHA twice daily.

 

  1. Melatonin:

Increasing evidence shows correlation between melatonin secretion and headache conditions. Melatonin supplementation has shown decreased headache intensity and duration. It is widely used as a sleep aid. Sleep is nature’s way of dealing with migraine. A dose of 3 mg is recommended to start for headaches including cluster headache. Higher doses up to 15 mg has been reviewed for use in cluster headache and have been used, if not making too groggy in the morning. The rationale behind using melatonin for cluster is that many theories regarding the cause of cluster headache center around the disruption of the normal circadian rhythm in the brain. This helps restore the normal circadian rhythm. It should be taken at least 2 hours before bedtime.

 

MITOCHONDRIAL SUPPLEMENTS

Mitochondria are the powerhouses within all cells of the body. These crucial metabolic organelles use oxygen to produce ATP, which is the primary energy source for the cell, and thus, for your body. Mitochondrial dysfunction leads to impaired oxygen metabolism and is suspected to play a role in migraine pathophysiology. Some migraineurs have been shown to have reduced mitochondrial activity which may lead to altered neuronal processing, and therefore a lower threshold for migraine attacks54–58. Riboflavin (vitamin B2), CoQ10 (ubiquinone; CoQ10), and alpha lipoic acid (thioctic acid) all play key roles in mitochondrial activity, and therefore have been implicated in migraine treatment by optimizing mitochondrial functioning.

 

  1. Riboflavin (Vitamin B2)

Riboflavin assists nerve cells in the production of ATP, a principal energy storing molecule. Riboflavin is an essential precursor to coenzymes involved in electron transport in oxidation reduction reactions within the Krebs cycle. This metabolic cycle is critical in production of ATP and generation of energy in the mitochondria, oxidative metabolism, maintaining membrane stability, and for all energy-related cellular functions59,60. It is necessary for many chemical reactions in the body. Brain riboflavin metabolism is suspected to affect migraine pathophysiology via several mechanisms, providing migraine preventive benefit.36,37

 

Riboflavin has a Level B (2nd highest) evidence recommendation for migraine prevention by the American Academy of Neurology and American Headache Society.14 This is a higher evidence recommendation than many of the prescription medications we use for migraine prevention. The Canadian Headache Society Guidelines strongly recommend B2 for migraine prevention as well.15 There have been at least 3 clinical trials of riboflavin using 400 mg per day all of which suggested that migraine frequency can be decreased. All 3 trials showed significant improvement in over half of migraine sufferers. Trials of riboflavin have suggested significant improvements in migraine by up to 59%61. Riboflavin (Vitamin B2): 200 mg twice a day (or 400 mg daily). The supplement is found in bread, cereal, milk, meat, and poultry. Most Americans get more riboflavin than the recommended daily allowance, however riboflavin deficiency is not necessary for the supplements to help prevent headache. One side effect to be aware of is that it can turn your urine bright neon yellow, although this is not harmful. Recommended dosing is 200 mg twice daily (or 400 mg once daily).

 

  1. Coenzyme Q10 (Ubiquinone; Ubiquinol; CoQ10)

CoQ10 is present in every membrane of all cells in the body62. Similar to riboflavin, CoQ10 plays a crucial role in electron transport and energy metabolism given its heavy involvement in mitochondrial function. CoQ10 is incorporated into the mitochondria, where it facilitates the transformation of fats and sugars into energy, thus it is often marketed to be an “energy enhancer”. Studies have shown that a nutritional supplement of CoQ10 can reduce the frequency of migraine attacks by improving the energy production of cells as with riboflavin. It also functions as an antioxidant by protecting against toxic oxidative reactions in the body, and CoQ10 tissue levels are known to decrease with age19,63. In one study, CoQ10 was found to be low in about 1/3rd of patients studied, and when replaced, headache frequency improved64. Migraine frequency was shown to improve significantly in more than 61% of patients in one study65, and 50% of patients in another study,66 supporting use for migraine prevention.36 Other studies have also shown benefit in migraine prevention when combined with magnesium and feverfew as well.38 The Canadian Headache Society guidelines strongly recommend use of CoQ10.15 Suggested dosing is around 150 mg-200 mg twice a day.

 

  1. Alpha Lipoic Acid (Thioctic Acid)

Alpha lipoic acid enhances the metabolism of oxygen and energy production by mitochondria67, and has shown reduction of migraine frequency68 when studied. Doses are typically around 300 mg twice daily.

 

HERBAL PREPARATIONS

  1. Feverfew (Tanacetum parthenium)

Feverfew is a common garden herb native to Europe and popular in Great Britain as a treatment for disorders typically controlled by aspirin. The mechanism of action is unknown but is believed to be related to a chemical called parthenolide which helps the body use serotonin more effectively. Serotonin helps prevent migraine and assists with resolution when it occurs. Parthenolide also inhibits the release of histamine which is linked to pain and inflammation. Consistency of active ingredients in different products can be a problem. Some formulations don’t have the active ingredient (parthenolide) that prevents migraine. A parthenolide content of 0.2% is generally recommended.

 

Feverfew has a Level B (2nd highest) evidence recommendation for migraine prevention by the American Academy of Neurology and American Headache Society.14 This is a higher evidence recommendation than many of the prescription medications we use for migraine prevention. The anti-migraine action36–38,69–75 of Feverfew is felt to be related to the parthenolides within the leaves. Studies have shown that the parthenolides provide anti-inflammatory and analgesic effects through several mechanisms involved in the migraine process that normally lead to pain. These include inhibition of phospholipase A, prostaglandin biosynthesis and platelet aggregation, and actions on serotonin including release of serotonin from platelets and white blood cells, as well as interaction at various serotonin receptor subtypes19,76–89. Study results have been variable based on wide variations in the strength of the parthenolides and differences in the stability of feverfew preparations used. However, a new, more stable feverfew extract (MIG-99) was created and showed a significant improvement in patients with high-frequency migraine90,91. The recommended dosing is generally around 50 mg twice daily (standardized to a high parthenolide content of 0.7% and stability measures of parthenolide), or, preferably MIG-99 6.25 mg three times daily if it can be found.

 

  1. Butterbur Extract (Petasites hybridus)

Butterbur is an extract derived from the petisides hybridus root, which has been used for medicinal purposes since ancient times. Butterbur is a well-researched and proven herbal supplements for migraine prevention36,69,70,92. For many years, it was the only supplement with a Level A (highest) evidence recommendation for migraine prevention by the American Academy of Neurology and American Headache Society,14 with a higher evidence recommendation than many of the prescription medications we use for migraine prevention. However, this recommendation was withdrawn a few years ago given a small handful of cases of liver failure reported in Germany. Although it is classified as an herbal supplement in the US, it is a licensed pharmaceutical medicine in Germany (Petadolex). Its two active compounds, petasin and isopetasin, help reduce cerebral blood vessel spasm and stop the inflammatory cascade which occurs in migraine93–95. Butterbur is thought to act through anti-inflammatory inhibition of leukotriene biosynthesis for its analgesic effects but also has calcium channel regulatory properties, both of which play a role in migraine19.

 

Studies have also shown anti-inflammatory effects mediated through inhibiting the additional inflammatory enzymes cyclooxygenase and prostaglandin production96. Notably, this is also what gives aspirin its anti-inflammatory effect. Trials have shown very positive results with significant decreases in migraine frequency of up to 58-77%, with 91% reporting overall improvement97–100. Side effects can include burping/belching. Raw butterbur root contains toxic chemicals that must be filtered out during the manufacturing process. To be sure you are choosing a safe product, look for a formulation that does not contain pyrrolizidine alkaloids since these are toxic to the liver. Recommended dosing is typically around 75 mg twice daily (free of Pyrrolizidine Alkaloids (PAs), standardized to contain a minimum of 7.5 mg of petasin and isopetasin).

 

  1. Ginger (Zingiber Officinale)

Ginger has anti-histamine and anti-inflammatory properties such as blocking pain-producing prostaglandins101,102, and helps with circulation and potentially headache. It is also widely used to treat nausea and vomiting, which accompany migraine103, and this is what it is primarily useful for. Recommended dosing ranges from 100-200 mg three times per day to 150 mg twice daily (standardized to contain 20% of gingerol and shogaol (dosage).

 

  1. CBD (Cannabidiol)

There have been a multitude of studies documenting the analgesic and anti-inflammatory benefits of medicinal cannabis across many chronic pain syndromes104–106, and it has been a historical treatment for headache and migraine for centuries.105–109 The vast majority of supporting evidence of cannabis and cannabinoids involves various chronic pain syndromes. These benefits are hypothesized to extend to headache disorders such as migraine given overlapping neurobiological pathways of pain. Some data suggests that cannabinoids appear to work uniquely within the inherent anatomical pathways of migraine (including serotonergic triptan pathways) and pain.104,105,107–139 Unfortunately, the majority of data supporting the use of cannabis and cannabinoids in migraine and headache disorders is based on case series, case reports, surveys and anecdotal evidence.105,107,145–154,108,155–161,134,135,140–144 There has been one retrospective study of cannabis use in the treatment of migraine which reported strong statistically significant findings of benefit.162 There have been only two limited prospective trials of cannabinoids containing a control group in headache disorders. One reported significant benefit in chronic daily headache associated with medication overuse headache,163 and the other reported significant benefit in both the acute and preventive treatment of chronic migraine.164

 

Given the growing evidence of cannabis and cannabinoids in the treatment of chronic pain and other medical conditions, in February 2019 The World Health Organization (WHO) recommended that cannabis be rescheduled and removed from the most restrictive scheduling category. In January 2017, the National Academies of Sciences, Engineering, and Medicine concluded that the use of cannabis for the treatment of pain is supported by well-controlled clinical trials and that there is substantial evidence that cannabis is an effective treatment for chronic pain in adults.165 In 2014, the Canadian Pain Society revised their consensus statement to recommend cannabinoids as a third-level therapy for chronic neuropathic pain based on the abundance of supporting evidence and a NNT (number needed to treat) estimated at approximately 3.166

 

Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the two predominant cannabinoids found in cannabis and are discussed in more detail here. CBD is several hundred more times anti-inflammatory than aspirin.104 There have been scientific, animal models, and limited human clinical trials documenting its anti-inflammatory and analgesic properties.167–176 In contrast to THC, CBD is non-intoxicating (no “high”).167 In November 2017, The World Health Organization (WHO) concluded that CBD exhibits no evidence for abuse or dependence potential, and that there is no evidence of public health related concerns associated with its use.177 In January 2018, the World Anti-Doping Agency (WADA) removed CBD from their prohibited list, no longer banning use by athletes.178

 

In December 2018, the Agriculture Improvement Act (Farm Bill) was signed into law in the United States. This legalized the agricultural growth and use of hemp (cannabis strains containing 0.3% THC or less) and hemp derivatives such as CBD, as well as removed hemp and its extracts (including CBD) from the Controlled Substances Act, making it no longer an illegal substance under federal law.

 

Thus, the use of CBD products has been exploding and is a new industry projected to exponentially increase into a multi-billion dollar industry179,180. Many patients are using these products for a variety of reasons181,182, most commonly in pain, including migraine prevention, given their easy access and availability. However, there are no studies evaluating CBD alone in treatment of migraine or any other headache disorders, so this is purely anecdotal. CBD products can readily be purchased online from a multitude of companies, in local health food and drug stores, and common retail pharmacies.183 CBD and suggested dosing (which are not currently clearly known) are discussed in much greater detail here.

 

REFERENCES

  1. Robbins MS, Lipton RB. The epidemiology of primary headache disorders. Semin Neurol. 2010;30(2):107-119. doi:10.1055/s-0030-1249220 [doi]
  2. Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68(5):343-349. doi:10.1212/01.wnl.0000252808.97649.21
  3. Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M. Prevalence and burden of migraine in the United States: data from the American Migraine Study II. Headache. 2001;41(7):646-657.
  4. Steiner TJ, Birbeck GL, Jensen RH, Katsarava Z, Stovner LJ, Martelletti P. Headache disorders are third cause of disability worldwide. J Headache Pain. 2015;16:58. doi:10.1186/s10194-015-0544-2 [doi]
  5. Holland S, Silberstein SD, Freitag F, et al. Evidence-based guideline update: NSAIDs and other complementary treatments for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78(17):1346-1353. doi:10.1212/WNL.0b013e3182535d0c [doi]
  6. Evers S, Afra J, Frese A, et al. EFNS guideline on the drug treatment of migraine–revised report of an EFNS task force. Eur J Neurol. 2009;16(9):968-981. doi:10.1111/j.1468-1331.2009.02748.x [doi]
  7. Hepp Z, Dodick DW, Varon SF, Gillard P, Hansen RN, Devine EB. Adherence to oral migraine-preventive medications among patients with chronic migraine. Cephalalgia. 2015;35(6):478-488. doi:10.1177/0333102414547138
  8. Lanteri-Minet M, Duru G, Mudge M, Cottrell S. Quality of life impairment, disability and economic burden associated with chronic daily headache, focusing on chronic migraine with or without medication overuse: a systematic review. Cephalalgia. 2011;31(7):837-850. doi:10.1177/0333102411398400
  9. Tindle HA, Davis RB, Phillips RS, Eisenberg DM. Trends in use of complementary and alternative medicine by US adults: 1997-2002. Altern Ther Health Med. 2005;11(1):42-49.
  10. Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990-1997: results of afollow-up national survey. JAMA. 1998;280(18):1569-1575.
  11. Kessler RC, Davis RB, Foster DF, et al. Long-term trends in the use of complementary and alternative medical therapies in the United States. Ann Intern Med. 2001;135(4):262-268.
  12. Haussermann D. Increased confidence in natural therapies. Deutsch Arztebl. 1997;94:1857-1858.
  13. Gaul C, Eismann R, Schmidt T, et al. Use of complementary and alternative medicine in patients suffering from primaryheadache disorders. Cephalalgia. 2009;29(10):1069-1078. doi:10.1111/j.1468-2982.2009.01841.x
  14. Loder E, Burch R, Rizzoli P. The 2012 AHS/AAN guidelines for prevention of episodic migraine: a summary and comparison with other recent clinical practice guidelines. Headache. 2012;52(6):930-945. doi:10.1111/j.1526-4610.2012.02185.x
  15. Pringsheim T, Davenport WJ, Mackie G, et al. Canadian Headache Society guideline for migraine prophylaxis. Can J Neurol Sci. 2012;39(2 Suppl 2):S1-59.
  16. Eby GA 3rd, Eby KL. Magnesium for treatment-resistant depression: a review and hypothesis. Med Hypotheses. 2010;74(4):649-660. doi:10.1016/j.mehy.2009.10.051
  17. Eby GA, Eby KL, Murk H. Magnesium and major depression. In: Vink R, Nechifor M, eds. Magnesium in the Central Nervous System [Internet]. Adelaide (AU); 2011.
  18. Connolly E, Worthley LI. Intravenous magnesium. Crit Care Resusc. 1999;1(2):162-172.
  19. Taylor FR. Nutraceuticals and headache: the biological basis. Headache. 2011;51(3):484-501. doi:10.1111/j.1526-4610.2011.01847.x
  20. Romani AMP. Magnesium homeostasis and alcohol consumption. Magnes Res. 2008;21(4):197-204.
  21. Wolf FI, Trapani V, Cittadini A. Magnesium and the control of cell proliferation: looking for a needle in a haystack. Magnes Res. 2008;21(2):83-91.
  22. Ramadan NM, Halvorson H, Vande-Linde A, Levine SR, Helpern JA, Welch KM. Low brain magnesium in migraine. Headache. 1989;29(9):590-593.
  23. Jain AC, Sethi NC, Babbar PK. A clinical electroencephalographic and trace element study with special reference to zinc, copper, and magnesium in serum and cerebrospinal fluid (CSF) in cases of migraine. J Neurol. 1985;(Suppl)(232):161.
  24. Mody I, Lambert JD, Heinemann U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J Neurophysiol. 1987;57(3):869-888. doi:10.1152/jn.1987.57.3.869
  25. Coan EJ, Collingridge GL. Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci Lett. 1985;53(1):21-26.
  26. Baudouin-Legros M, Dard B, Guicheney P. Hyperreactivity of platelets from spontaneously hypertensive rats. Role of external magnesium. Hypertens (Dallas, Tex 1979). 1986;8(8):694-699.
  27. Altura BM, Altura BT. Cardiovascular risk factors and magnesium: relationships to atherosclerosis, ischemic heart disease and hypertension. Magnes Trace Elem. 10(2-4):182-192.
  28. Altura BM, Altura BT. New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. I. Clinical aspects. Magnesium. 1985;4(5-6):226-244.
  29. Altura BT, Altura BM. The role of magnesium in etiology of strokes and cerebrovasospasm. Magnesium. 1982;1:277-291.
  30. Turlapaty PD, Altura BM. Magnesium deficiency produces spasms of coronary arteries: relationship to etiology of sudden death ischemic heart disease. Science. 1980;208(4440):198-200.
  31. Altura BM, Altura BT, Carella A, Gebrewold A, Murakawa T, Nishio A. Mg2+-Ca2+ interaction in contractility of vascular smooth muscle: Mg2+ versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can J Physiol Pharmacol. 1987;65(4):729-745.
  32. Facchinetti F, Sances G, Borella P, Genazzani AR, Nappi G. Magnesium prophylaxis of menstrual migraine: effects on intracellular magnesium. Headache. 1991;31(5):298-301.
  33. Peikert A, Wilimzig C, Kohne-Volland R. Prophylaxis of migraine with oral magnesium: results from a prospective, multi-center, placebo-controlled and double-blind randomized study. Cephalalgia. 1996;16(4):257-263. doi:10.1046/j.1468-2982.1996.1604257.x
  34. Koseoglu E, Talaslioglu A, Gonul AS, Kula M. The effects of magnesium prophylaxis in migraine without aura. Magnes Res. 2008;21(2):101-108.
  35. Pfaffenrath V, Wessely P, Meyer C, et al. Magnesium in the prophylaxis of migraine–a double-blind placebo-controlled study. Cephalalgia. 1996;16(6):436-440. doi:10.1046/j.1468-2982.1996.1606436.x
  36. Rajapakse T, Pringsheim T. Nutraceuticals in Migraine: A Summary of Existing Guidelines for Use. Headache. 2016;56(4):808-816. doi:10.1111/head.12789
  37. Maizels M, Blumenfeld A, Burchette R. A combination of riboflavin, magnesium, and feverfew for migraine prophylaxis: arandomized trial. Headache. 2004;44(9):885-890. doi:10.1111/j.1526-4610.2004.04170.x
  38. Guilbot A, Bangratz M, Ait Abdellah S, Lucas C. A combination of coenzyme Q10, feverfew and magnesium for migraine prophylaxis: a prospective observational study. BMC Complement Altern Med. 2017;17(1):433. doi:10.1186/s12906-017-1933-7
  39. The Dizzy Cook. The Best Magnesium Supplements for Migraine. https://thedizzycook.com/magnesium-supplements-explained-which-one-is-best-for-vestibular-migraine/. Accessed December 6, 2020.
  40. Wheeler S. Vitamin D deficiency common in patients with chronic migraine. In: American Headache Society 50th Annual Scientific Meeting: Abstract S33.
  41. Titus F, Davalos A, Alom J, Codina A. 5-Hydroxytryptophan versus methysergide in the prophylaxis of migraine. Randomized clinical trial. Eur Neurol. 1986;25(5):327-329. doi:10.1159/000116030
  42. Bono G, Criscuoli M, Martignoni E, Salmon S, Nappi G. Serotonin precursors in migraine prophylaxis. Adv Neurol. 1982;33:357-363.
  43. Yoon M-S, Savidou I, Diener H-C, Limmroth V. Evidence-based medicine in migraine prevention. Expert Rev Neurother. 2005;5(3):333-341. doi:10.1586/14737175.5.3.333
  44. Maissen CP, Ludin HP. [Comparison of the effect of 5-hydroxytryptophan and propranolol in the intervaltreatment of migraine]. Schweiz Med Wochenschr. 1991;121(43):1585-1590.
  45. Ribeiro CA. L-5-Hydroxytryptophan in the prophylaxis of chronic tension-type headache: a double-blind, randomized, placebo-controlled study. For the Portuguese Head Society. Headache. 2000;40(6):451-456.
  46. James M, Proudman S, Cleland L. Fish oil and rheumatoid arthritis: past, present and future. Proc Nutr Soc. 2010;69(3):316-323. doi:10.1017/S0029665110001564
  47. Calder PC. Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol. 2011;668 Suppl:S50-8. doi:10.1016/j.ejphar.2011.05.085
  48. Proudman SM, James MJ, Spargo LD, et al. Fish oil in recent onset rheumatoid arthritis: a randomised, double-blind controlled trial within algorithm-based drug use. Ann Rheum Dis. 2015;74(1):89-95. doi:10.1136/annrheumdis-2013-204145
  49. Harel Z, Gascon G, Riggs S, Vaz R, Brown W, Exil G. Supplementation with omega-3 polyunsaturated fatty acids in the management of recurrent migraines in adolescents. J Adolesc Health. 2002;31(2):154-161.
  50. Goldberg RJ, Katz J. A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain. 2007;129(1-2):210-223. doi:10.1016/j.pain.2007.01.020
  51. Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280-289. doi:10.1111/j.1753-4887.2010.00287.x
  52. Rosenbaum CC, O’Mathuna DP, Chavez M, Shields K. Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis. Altern Ther Health Med. 2010;16(2):32-40.
  53. Hurst S, Zainal Z, Caterson B, Hughes CE, Harwood JL. Dietary fatty acids and arthritis. Prostaglandins Leukot Essent Fatty Acids. 2010;82(4-6):315-318. doi:10.1016/j.plefa.2010.02.008
  54. Koo B, Becker LE, Chuang S, et al. Mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes (MELAS): clinical, radiological, pathological, and genetic observations. Ann Neurol. 1993;34(1):25-32. doi:10.1002/ana.410340107
  55. Lanteri-Minet M, Desnuelle C. [Migraine and mitochondrial dysfunction]. Rev Neurol (Paris). 1996;152(4):234-238.
  56. Montagna P, Cortelli P, Monari L, et al. 31P-magnetic resonance spectroscopy in migraine without aura. Neurology. 1994;44(4):666-669. doi:10.1212/wnl.44.4.666
  57. Bresolin N, Martinelli P, Barbiroli B, et al. Muscle mitochondrial DNA deletion and 31P-NMR spectroscopy alterations in a migraine patient. J Neurol Sci. 1991;104(2):182-189.
  58. Sparaco M, Feleppa M, Lipton RB, Rapoport AM, Bigal ME. Mitochondrial dysfunction and migraine: evidence and hypotheses. Cephalalgia. 2006;26(4):361-372. doi:10.1111/j.1468-2982.2005.01059.x
  59. Evans RW, Taylor FR. “Natural” or alternative medications for migraine prevention. Headache. 2006;46(6):1012-1018. doi:10.1111/j.1526-4610.2006.00473.x
  60. O’Brien HL, Hershey AD. Vitamins and paediatric migraine: Riboflavin as a preventative medication. Cephalalgia. 2010;30(12):1417-1418. doi:10.1177/0333102410378358
  61. Schoenen J, Jacquy J, Lenaerts M. Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology. 1998;50(2):466-470. doi:10.1212/wnl.50.2.466
  62. Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta. 2004;1660(1-2):171-199.
  63. Beyer RE, Burnett BA, Cartwright KJ, et al. Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. Mech Ageing Dev. 1985;32(2-3):267-281.
  64. Hershey AD, Powers SW, Vockell A-LB, et al. Coenzyme Q10 deficiency and response to supplementation in pediatric and adolescent migraine. Headache. 2007;47(1):73-80. doi:10.1111/j.1526-4610.2007.00652.x
  65. Rozen TD, Oshinsky ML, Gebeline CA, et al. Open label trial of coenzyme Q10 as a migraine preventive. Cephalalgia. 2002;22(2):137-141. doi:10.1046/j.1468-2982.2002.00335.x
  66. Sandor PS, Di Clemente L, Coppola G, et al. Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology. 2005;64(4):713-715. doi:10.1212/01.WNL.0000151975.03598.ED
  67. Matalon R, Stumpf DA, Michals K, Hart RD, Parks JK, Goodman SI. Lipoamide dehydrogenase deficiency with primary lactic acidosis: favorable response to treatment with oral lipoic acid. J Pediatr. 1984;104(1):65-69.
  68. Magis D, Ambrosini A, Sandor P, Jacquy J, Laloux P, Schoenen J. A randomized double-blind placebo-controlled trial of thioctic acid in migraine prophylaxis. Headache. 2007;47(1):52-57. doi:10.1111/j.1526-4610.2006.00626.x
  69. Silberstein SD. Preventive Migraine Treatment. Continuum (Minneap Minn). 2015;21(4 Headache):973-989. doi:10.1212/CON.0000000000000199
  70. D’Onofrio F, Raimo S, Spitaleri D, Casucci G, Bussone G. Usefulness of nutraceuticals in migraine prophylaxis. Neurol Sci Off J Ital Neurol Soc  Ital Soc Clin Neurophysiol. 2017;38(Suppl 1):117-120. doi:10.1007/s10072-017-2901-1
  71. Wider B, Pittler MH, Ernst E. Feverfew for preventing migraine. Cochrane database Syst Rev. 2015;4:CD002286. doi:10.1002/14651858.CD002286.pub3
  72. Saranitzky E, White CM, Baker EL, Baker WL, Coleman CI. Feverfew for migraine prophylaxis: a systematic review. J Diet Suppl. 2009;6(2):91-103. doi:10.1080/19390210902861809
  73. Pittler MH, Ernst E. Feverfew for preventing migraine. Cochrane database Syst Rev. 2004;(1):CD002286. doi:10.1002/14651858.CD002286.pub2
  74. Ernst E, Pittler MH. The efficacy and safety of feverfew (Tanacetum parthenium L.): an update of a systematic review. Public Health Nutr. 2000;3(4A):509-514. doi:10.1017/s1368980000000598
  75. Vogler BK, Pittler MH, Ernst E. Feverfew as a preventive treatment for migraine: a systematic review. Cephalalgia. 1998;18(10):704-708. doi:10.1046/j.1468-2982.1998.1810704.x
  76. Heptinstall S, White A, Williamson L, Mitchell JR. Extracts of feverfew inhibit granule secretion in blood platelets and polymorphonuclear leucocytes. Lancet (London, England). 1985;1(8437):1071-1074.
  77. Barsby RW, Salan U, Knight DW, Hoult JR. Feverfew and vascular smooth muscle: extracts from fresh and dried plants show opposing pharmacological profiles, dependent upon sesquiterpene lactone content. Planta Med. 1993;59(1):20-25. doi:10.1055/s-2006-959596
  78. Bejar E. Parthenolide inhibits the contractile responses of rat stomach fundus to fenfluramine and dextroamphetamine but not serotonin. J Ethnopharmacol. 1996;50(1):1-12.
  79. Weber JT, O’Connor MF, Hayataka K, et al. Activity of Parthenolide at 5HT2A receptors. J Nat Prod. 1997;60(6):651-653. doi:10.1021/np960644d
  80. Mittra S, Datta A, Singh SK, Singh A. 5-Hydroxytryptamine-inhibiting property of Feverfew: role of parthenolide content. Acta Pharmacol Sin. 2000;21(12):1106-1114.
  81. Shrivastava R, Pechadre JC, John GW. Tanacetum parthenium and Salix alba (Mig-RL) combination in migraine prophylaxis: a prospective, open-label study. Clin Drug Investig. 2006;26(5):287-296. doi:10.2165/00044011-200626050-00006
  82. Heptinstall S, Groenewegen WA, Spangenberg P, Losche W. Inhibition of platelet behaviour by feverfew: a mechanism of action involving sulphydryl groups. Folia Haematol Int Mag Klin Morphol Blutforsch. 1988;115(4):447-449.
  83. Heptinstall S, Groenewegen WA, Spangenberg P, Loesche W. Extracts of feverfew may inhibit platelet behaviour via neutralization of sulphydryl groups. J Pharm Pharmacol. 1987;39(6):459-465.
  84. Loesche W, Groenewegen WA, Krause S, Spangenberg P, Heptinstall S. Effects of an extract of feverfew (Tanacetum parthenium) on arachidonic acid metabolism in human blood platelets. Biomed Biochim Acta. 1988;47(10-11):S241-3.
  85. Pugh WJ, Sambo K. Prostaglandin synthetase inhibitors in feverfew. J Pharm Pharmacol. 1988;40(10):743-745.
  86. Makheja AN, Bailey JM. A platelet phospholipase inhibitor from the medicinal herb feverfew (Tanacetum parthenium). Prostaglandins Leukot Med. 1982;8(6):653-660.
  87. Collier HO, Butt NM, McDonald-Gibson WJ, Saeed SA. Extract of feverfew inhibits prostaglandin biosynthesis. Lancet (London, England). 1980;2(8200):922-923.
  88. Thakkar JK, Sperelakis N, Pang D, Franson RC. Characterization of phospholipase A2 activity in rat aorta smooth muscle cells. Biochim Biophys Acta. 1983;750(1):134-140.
  89. Marles RJ, Kaminski J, Arnason JT, et al. A bioassay for inhibition of serotonin release from bovine platelets. J Nat Prod. 1992;55(8):1044-1056.
  90. Diener HC, Pfaffenrath V, Schnitker J, Friede M, Henneicke-von Zepelin H-H. Efficacy and safety of 6.25 mg t.i.d. feverfew CO2-extract (MIG-99) in migraine prevention–a randomized, double-blind, multicentre, placebo-controlled study. Cephalalgia. 2005;25(11):1031-1041. doi:10.1111/j.1468-2982.2005.00950.x
  91. Pfaffenrath V, Diener HC, Fischer M, Friede M, Henneicke-von Zepelin HH. The efficacy and safety of Tanacetum parthenium (feverfew) in migraine prophylaxis–a double-blind, multicentre, randomized placebo-controlled dose-response study. Cephalalgia. 2002;22(7):523-532. doi:10.1046/j.1468-2982.2002.00396.x
  92. Benemei S, De Logu F, Li Puma S, et al. The anti-migraine component of butterbur extracts, isopetasin, desensitizes peptidergic nociceptors by acting on TRPA1 cation channel. Br J Pharmacol. 2017;174(17):2897-2911. doi:10.1111/bph.13917
  93. Eaton J. Butterbur, herbal help for migraine. Nat Pharm. 1998;2:23-24.
  94. Pearlman EM, Fisher S. Preventive treatment for childhood and adolescent headache: Role of once-daily montelukast sodium. (Abstract). Cephalalgia. 2001;21:461.
  95. Sheftell F, Rapoport A, Weeks R, Walker B, Gammerman I, Baskin S. Montelukast in the prophylaxis of migraine: a potential role for leukotriene modifiers. Headache. 2000;40(2):158-163.
  96. Fiebich BL, Grozdeva M, Hess S, et al. Petasites hybridus extracts in vitro inhibit COX-2 and PGE2 release by direct interaction with the enzyme and by preventing p42/44 MAP kinase activation in rat primary microglial cells. Planta Med. 2005;71(1):12-19. doi:10.1055/s-2005-837744
  97. Pothmann R, Danesch U. Migraine prevention in children and adolescents: results of an open study with aspecial butterbur root extract. Headache. 2005;45(3):196-203. doi:10.1111/j.1526-4610.2005.05044.x
  98. Grossman M, Schmidrams H. An extract of Petasites hybridus is effective in the prophylaxis of migraine. Int J Clin Pharmacol Ther. 2000;38:430-435.
  99. Diener H, Rahlfs V, Danesch U. The first placebo-controlled trial of a special butterbur root extract for the prevention of migraine: Reanalysis of efficacy criteria. Eur Neurol. 2004;51(2):89-97. doi:10.1159/000076535
  100. Lipton RB, Gobel H, Einhaupl KM, Wilks K, Mauskop A. Petasites hybridus root (butterbur) is an effective preventive treatment for migraine. Neurology. 2004;63(12):2240-2244. doi:10.1212/01.wnl.0000147290.68260.11
  101. Srivastava KC, Mustafa T. Ginger (Zingiber officinale) and rheumatic disorders. Med Hypotheses. 1989;29(1):25-28.
  102. Srivastava KC, Mustafa T. Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Med Hypotheses. 1992;39(4):342-348.
  103. Mustafa T, Srivastava KC. Ginger (Zingiber officinale) in migraine headache. J Ethnopharmacol. 1990;29(3):267-273.
  104. Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache J Head Face Pain. 2018;58(7):1139-1186. doi:10.1111/head.13345
  105. Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It’s Been …. Headache J Head Face Pain. 2015;55(6):885-916. doi:10.1111/head.12570
  106. Russo EB. Cannabinoids in the management of difficult to treat pain. Ther Clin Risk Manag. 2008;4(1):245-259.
  107. Russo E. Hemp for headache: an in-depth historical and scientific review of cannabis in migraine treatment. J Cannabis Ther. 2001;1:21-92.
  108. Russo E. Cannabis for migraine treatment: the once and future prescription? An historical and scientific review. Pain. 1998;76(1-2):3-8.
  109. Lochte BC, Beletsky A, Samuel NK, Grant I. The Use of Cannabis for Headache Disorders. Cannabis cannabinoid Res. 2017;2(1):61-71. doi:10.1089/can.2016.0033 [doi]
  110. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev. 2011;12(10):570-584. doi:10.1038/nrn3057 [doi]
  111. Greco R, Gasperi V, Sandrini G, et al. Alterations of the endocannabinoid system in an animal model of migraine: evaluation in cerebral areas of rat. Cephalalgia. 2010;30(3):296-302. doi:10.1111/j.1468-2982.2009.01924.x [doi]
  112. Haj-Dahmane S, Shen RY. Endocannabinoids suppress excitatory synaptic transmission to dorsal raphe serotonin neurons through the activation of presynaptic CB1 receptors. J Pharmacol Exp Ther. 2009;331(1):186-196. doi:10.1124/jpet.109.153858 [doi]
  113. Palazzo E, de Novellis V, Petrosino S, et al. Neuropathic pain and the endocannabinoid system in the dorsal raphe: pharmacological treatment and interactions with the serotonergic system. Eur J Neurosci. 2006;24(7):2011-2020. doi:EJN5086 [pii]
  114. Voth EA, Schwartz RH. Medicinal applications of delta-9-tetrahydrocannabinol and marijuana. Ann Intern Med. 1997;126(10):791-798.
  115. Akerman S, Kaube H, Goadsby PJ. Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J Pharmacol Exp Ther. 2004;309(1):56-63. doi:10.1124/jpet.103.059808 [doi]
  116. Akerman S, Holland PR, Goadsby PJ. Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther. 2007;320(1):64-71. doi:jpet.106.106971 [pii]
  117. Kelly S, Chapman V. Selective cannabinoid CB1 receptor activation inhibits spinal nociceptive transmission in vivo. J Neurophysiol. 2001;86(6):3061-3064.
  118. Meng ID, Johansen JP. Antinociception and modulation of rostral ventromedial medulla neuronal activity by local microinfusion of a cannabinoid receptor agonist. Neuroscience. 2004;124(3):685-693. doi:10.1016/j.neuroscience.2003.10.001 [doi]
  119. Meng ID, Manning BH, Martin WJ, Fields HL. An analgesia circuit activated by cannabinoids. Nature. 1998;395(6700):381-383. doi:10.1038/26481 [doi]
  120. Palazzo E, Marabese I, de Novellis V, et al. Metabotropic and NMDA glutamate receptors participate in the cannabinoid-induced antinociception. Neuropharmacology. 2001;40(3):319-326. doi:S002839080000160X [pii]
  121. Finn DP, Jhaveri MD, Beckett SR, et al. Effects of direct periaqueductal grey administration of a cannabinoid receptor agonist on nociceptive and aversive responses in rats. Neuropharmacology. 2003;45(5):594-604. doi:S0028390803002351 [pii]
  122. Maione S, Bisogno T, de Novellis V, et al. Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 re. J Pharmacol Exp Ther. 2006;316(3):969-982. doi:jpet.105.093286 [pii]
  123. de Novellis V, Mariani L, Palazzo E, et al. Periaqueductal grey CB1 cannabinoid and metabotropic glutamate subtype 5 receptors modulate changes in rostral ventromedial medulla neuronal activities induced by subcutaneous formalin in the rat. Neuroscience. 2005;134(1):269-281. doi:S0306-4522(05)00334-9 [pii]
  124. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and “triptan” receptors: implications in migraine. J Neurosci. 2013;33(37):14869-14877. doi:10.1523/JNEUROSCI.0943-13.2013 [doi]
  125. Knight YE, Goadsby PJ. The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience. 2001;106(4):793-800. doi:S0306452201003037 [pii]
  126. Knight YE, Bartsch T, Kaube H, Goadsby PJ. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci. 2002;22(5):RC213-8P_$Fhttp://www.ncbi.nlm.nih. doi:20026167 [pii]
  127. Knight YE, Bartsch T, Goadsby PJ. Trigeminal antinociception induced by bicuculline in the periaqueductal gray (PAG) is not affected by PAG P/Q-type calcium channel blockade in rat. Neurosci Lett. 2003;336(2):113-116. doi:S0304394002012508 [pii]
  128. Juhasz G, Lazary J, Chase D, et al. Variations in the cannabinoid receptor 1 gene predispose to migraine. Neurosci Lett. 2009;461(2):116-120. doi:10.1016/j.neulet.2009.06.021 [doi]
  129. Nyholt DR, Morley KI, Ferreira MA, et al. Genomewide significant linkage to migrainous headache on chromosome 5q21. Am J Hum Genet. 2005;77(3):500-512. doi:S0002-9297(07)63030-4 [pii]
  130. Bartsch T, Knight YE, Goadsby PJ. Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception. Ann Neurol. 2004;56(3):371-381. doi:10.1002/ana.20193 [doi]
  131. Vaughan CW, McGregor IS, Christie MJ. Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro. Br J Pharmacol. 1999;127(4):935-940. doi:10.1038/sj.bjp.0702636 [doi]
  132. Vaughan CW, Connor M, Bagley EE, Christie MJ. Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Mol Pharmacol. 2000;57(2):288-295.
  133. Greco R, Mangione AS, Sandrini G, Nappi G, Tassorelli C. Activation of CB2 receptors as a potential therapeutic target for migraine: evaluation in an animal model. J Headache Pain. 2014;15:14. doi:10.1186/1129-2377-15-14 [doi]
  134. Volfe Z, Dvilansky A, Nathan I. Cannabinoids block release of serotonin from platelets induced by plasma from migraine patients. Int J Clin Pharmacol Res. 1985;5(4):243-246.
  135. Greco R, Gasperi V, Maccarrone M, Tassorelli C. The endocannabinoid system and migraine. Exp Neurol. 2010;224(1):85-91. doi:10.1016/j.expneurol.2010.03.029 [doi]
  136. Mailleux P, Vanderhaeghen JJ. Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons. Neurosci Lett. 1992;148(1-2):173-176.
  137. Moldrich G, Wenger T. Localization of the CB1 cannabinoid receptor in the rat brain. An immunohistochemical study. Peptides. 2000;21(11):1735-1742. doi:S0196-9781(00)00324-7 [pii]
  138. Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2008;29(2):192-200. doi:NEL290208R02 [pii]
  139. Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2004;25(1-2):31-39. doi:NEL251204R02 [pii]
  140. Noyes Jr R, Baram DA. Cannabis analgesia. Compr Psychiatry. 1974;15(6):531-535.
  141. Schnelle M, Grotenhermen F, Reif M, Gorter RW. Results of a standardized survey on the medical use of cannabis products in the German-speaking area. Forsch Komplementarmed. 1999;6 Suppl 3:28-36. doi:57154 [pii]
  142. el-Mallakh RS. Marijuana and migraine. Headache. 1987;27(8):442-443.
  143. Grinspoon L, Bakalar JB. Marihuana: The Forbidden Medicine. New Haven, CT: Yale University; 1993.
  144. el-Mallakh RS. Migraine headaches and drug abuse. South Med J. 1989;82(6):805.
  145. Gorji A. Pharmacological treatment of headache using traditional Persian medicine. Trends Pharmacol Sci. 2003;24(7):331-334. doi:S0165-6147(03)00164-0 [pii]
  146. Robbins MS, Tarshish S, Solomon S, Grosberg BM. Cluster attacks responsive to recreational cannabis and dronabinol. Headache. 2009;49(6):914-916. doi:10.1111/j.1526-4610.2009.01344.x [doi]
  147. Donnet A, Lanteri-Minet M, Guegan-Massardier E, et al. Chronic cluster headache: a French clinical descriptive study. J Neurol Neurosurg Psychiatry. 2007;78(12):1354-1358. doi:jnnp.2006.112037 [pii]
  148. Leroux E, Taifas I, Valade D, Donnet A, Chagnon M, Ducros A. Use of cannabis among 139 cluster headache sufferers. Cephalalgia. 2013;33(3):208-213. doi:10.1177/0333102412468669 [doi]
  149. Evans RW, Ramadan NM. Are cannabis-based chemicals helpful in headache? Headache. 2004;44(7):726-727. doi:10.1111/j.1526-4610.2004.04133C.x [doi]
  150. Consroe P, Musty R, Rein J, Tillery W, Pertwee R. The perceived effects of smoked cannabis on patients with multiple sclerosis. Eur Neurol. 1997;38(1):44-48.
  151. Mackenzie S. Remarks on the value of Indian hemp in the treatment of a certain type of headache. Br Med J. 1887;1:97-98.
  152. Nunberg H, Kilmer B, Pacula RL, Burgdorf J. An Analysis of Applicants Presenting to a Medical Marijuana Specialty Practice in California. J Drug Policy Anal. 2011;4(1)://www.ncbi.nlm.nih. doi:1 [pii]
  153. Donovan M. On the physical and medicinal qualities of Indian hemp (Cannabis indica); with observations on the best mode of administration, and cases illustrative of its powers. Dublin J Med Sci. 1845;26:368-461.
  154. Reynolds JR. On some of the therapeutical uses of Indian hemp. Arch Med. 1868;2:154-160.
  155. Waring EJ. Practical Therapeutics. Philadelphia: Lindsay & Blakiston; 1874.
  156. Ringer S. A Handbook of Therapeutics. London: H.K. Lewis; 1886.
  157. Hare HA. Clinical and physiological notes on the action of Cannabis indica. There Gaz. 1887;11:225-228.
  158. Suckling CW. On the therapeutic value of Indian hemp. Br Med J. 1891;2:11-12.
  159. Mikuriya TH. Chronic Migraine Headache: Five Cases Successfully Treated with Marinol and/or Illicit Cannabis. Berkeley, CA: Schaffer Library of Drug Policy; 1991.
  160. Lucas P, Baron EP, Jikomes N. Medical cannabis patterns of use and substitution for opioids & other pharmaceutical drugs, alcohol, tobacco, and illicit substances; results from a cross-sectional survey of authorized patients. Harm Reduct J. 2019;16(1):9. doi:10.1186/s12954-019-0278-6
  161. Baron EP, Lucas P, Eades J, Hogue O. Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J Headache Pain. 2018;19(1):1-28. doi:10.1186/s10194-018-0862-2
  162. Rhyne DN, Anderson SL, Gedde M, Borgelt LM. Effects of Medical Marijuana on Migraine Headache Frequency in an Adult Population. Pharmacotherapy. 2016;36(5):505-510. doi:10.1002/phar.1673 [doi]
  163. Pini LA, Guerzoni S, Cainazzo MM, et al. Nabilone for the treatment of medication overuse headache: results of a preliminary double-blind, active-controlled, randomized trial. J Headache Pain. 2012;13(8):677-684. doi:10.1007/s10194-012-0490-1 [doi]
  164. Nicolodi M, Sandoval V, Terrine A. Therapeutic use of cannabinoids – Dose Finding, Effects, and Pilot Data of Effects in Chronic Migraine and Cluster Headache. Abstract presentation at 3rd Congress of the European Academy of Neurology (EAN), Amsterdam, 6/24/17. In: 3rd Congress of the European Academy of Neurology (EAN), Amsterdam 6/24/17. Amsterdam.
  165. Committee of the Health Effects of Marijuana: An Evidence Review and Research. The Health Effects of Cannabis and Cannabinoids. The Current State of Evidence and Recommendations For Research.Washington, DC: The National Academies Press.; 2017.
  166. Moulin D, Boulanger A, Clark AJ, et al. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res Manag. 2014;19(6):328-335.
  167. Russo EB. Cannabidiol Claims and Misconceptions. Trends Pharmacol Sci. 2017;38(3):198-201. doi:10.1016/j.tips.2016.12.004
  168. Pisanti S, Malfitano AM, Ciaglia E, et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol Ther. 2017;175:133-150. doi:S0163-7258(17)30065-7 [pii]
  169. White CM. A Review of Human Studies Assessing Cannabidiol’s (CBD) Therapeutic Actions and Potential. J Clin Pharmacol. 2019;59(7):923-934. doi:10.1002/jcph.1387
  170. Palmieri B, Laurino C, Vadala M. Short-Term Efficacy of CBD-Enriched Hemp Oil in Girls with Dysautonomic Syndrome after Human Papillomavirus Vaccination. Isr Med Assoc J. 2017;19(2):79-84.
  171. Cunetti L, Manzo L, Peyraube R, Arnaiz J, Curi L, Orihuela S. Chronic Pain Treatment With Cannabidiol in Kidney Transplant Patients in Uruguay. Transplant Proc. 2018;50(2):461-464. doi:10.1016/j.transproceed.2017.12.042
  172. Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil. 2003;17(1):21-29.
  173. Philpott HT, O’Brien M, McDougall JJ. Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain. 2017;158(12):2442-2451. doi:10.1097/j.pain.0000000000001052
  174. Hammell DC, Zhang LP, Ma F, et al. Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. Eur J Pain. 2016;20(6):936-948. doi:10.1002/ejp.818
  175. Malfait AM, Gallily R, Sumariwalla PF, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A. 2000;97(17):9561-9566. doi:10.1073/pnas.160105897 [doi]
  176. Costa B, Colleoni M, Conti S, et al. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(3):294-299. doi:10.1007/s00210-004-0871-3 [doi]
  177. World Health, Organization: Expert Committee on Drug Dependence. Cannabidiol (CBD) Pre-Review Report. http://www.who.int/medicines/access/controlled-substances/5.2_CBD.pdf.
  178. (WADA) WA-DA. “Prohibited List: January 2018”. The World Anti-Doping Code International Standard. https://www.wada-ama.org/sites/default/files/prohibited_list_2018_en.pdf.
  179. Garber-Paul E. Exclusive: New Report Predicts CBD Market Will Hit $22 Billion by 2022. Roll Stone. September 2018.
  180. Kovacevich N. With CBD, Cannabis Wellness Market Goes Big. Forbes. March 2019. https://www.forbes.com/sites/nickkovacevich/2019/03/06/with-cbd-cannabis-wellness-market-goes-big/#1591fba63fcb.
  181. Velasquez-Manoff M. Can CBD Really Do All That? How one molecule from the cannabis plant came to be seen as a therapeutic cure-all. New York Times. https://www.nytimes.com/interactive/2019/05/14/magazine/cbd-cannabis-cure.html. Published May 14, 2019.
  182. Williams A. Why is CBD Everywhere? New York Times. https://www.nytimes.com/2018/10/27/style/cbd-benefits.html. Published October 27, 2018.
  183. Schiller M. CVS and Walgreens Plan to Carry CBD Products: What’s Next for the Rapidly Growing Market? Cannabis Bus Times. April 2019. https://www.cannabisbusinesstimes.com/article/cvs-walgreens-carry-cbd-products-whats-next-for-market/.

 

Share
Read More

UBRELVY vs. NURTEC ODT vs. REYVOW vs. TRIPTANS. NEW MIGRAINE ABORTIVE OPTIONS ARE FINALLY HERE, BUT WHAT ARE THE DIFFERENCES AND IS ONE BEST FOR YOU?

BACKGROUND

Since the development and availability of sumatriptan in 1992, the main migraine specific abortive available has been the triptans. Triptans work great for a lot of people. However, about 25% of patients do not respond to triptans. Others cannot tolerate side effects, or they cannot use them because of medical contraindications (such as coronary artery disease, peripheral artery disease, stroke, etc.). The triptans are discussed in more detail here. The alternatives to triptans have been the ergots (ergotamine, DHE) which can be complicated to use, tend to have an excess of side effects for many, and have the same medical contraindications as triptans. NSAIDs and over the counter analgesics are also commonly used, although many do not respond to or cannot take them due to other medical conditions. Even worse are opiates/opioids and butalbital medications such as fioricet, both of which have a high risk of leading to medication overuse headache (rebound headache), as discussed here.  For close to 3 decades, these have remained the only limited options of acute/abortive migraine treatment, despite migraine being such a widespread common disorder! Thankfully, these limited options have now expanded to 3 new migraine abortive options in adults between 2 new classes which became available commercially in 2020; the gepants and the ditans. These 3 new abortive medications are compared and contrasted with one another, as well as with the triptans in the table which I (exhaustingly) constructed below.

 

GEPANTS

The gepants were the first to emerge as new options, first with Ubrogepant (Ubrelvy) which became available from Allergan in January 2020 and then Rimegepant (Nurtec ODT (orally dissolvable tablet)) became available by Biohaven in February 2020. During a migraine attack, the trigeminal nerves release a variety of inflammatory proteins. One of the main proteins is called CGRP (calcitonin gene related peptide). CGRP causes worsening inflammation around the brain (“sterile inflammation”), intensified pain signals, and dilation of the arteries surrounding the brain, which leads to increasing pain signals. Gepants work as CGRP receptor antagonists, which means they directly target and block (antagonist) the CGRP receptor. This results in the medication “blocking” the CGRP inflammatory protein from sticking to the CGRP receptor to activate it, and thus prevents it from “turning on” these pathways of pain.

 

Many patients use once monthly CGRP antagonist monoclonal antibody (mAbs) self-injections (autoinjection devices) which are FDA approved for migraine prevention (Aimovig (Erenumab), Ajovy (Fremanezumab), Emgality (Galcanezumab)). These have little to no drug interactions and do not affect the liver or kidneys. However, patients often ask if these medications can be used with the gepants given similar mechanisms of action (although much different structure, molecule size, and metabolism). Further confirmatory research is needed, but it is theorized that these medicines can likely be used safely together, and they are metabolized by completely different mechanisms. The gepants are metabolized in the liver, while the CGRP mAbs are metabolized and cleared in the reticuloendothelial system. Furthermore, there is limited evidence suggesting that they may even provide a synergistic effect by working together, but more evidence is needed to confirm this.

 

The side effect profile of the gepants is minimal compared to the triptans and their alternatives. This is really great to have new options with much less side effect potential! In addition, there is no interaction with using them and triptans, NSAIDs, or other acute meds in case they happen to be taken close together. These medications are not associated with addiction potential, or medication overuse headache (rebound), which is great! Compared to the triptans and ergots, these medications are NOT contraindicated in patients with stable cardiovascular or peripheral vascular disease or risk factors because they do not cause vasoconstriction (narrowing) of the arteries, which is a HUGE benefit. There are many patients who have been stuck in limbo unable to use standard therapies such as triptans due to other medical problems such as heart disease, so we finally have a safe alternative for them, which is another highlight of these medications. Safety of these medications in pregnancy or breastfeeding is unknown because they haven’t been studied, and therefore are not recommended. The primary drug interactions to be aware of with these medications are when used with other medications that are metabolized by the liver enzyme system called CYP3A4. Many commonly used medications are metabolized by this system. Strong or moderate inhibitors of CYP3A4 (which slow down the metabolism activity) will cause an increase in gepant exposure. Strong or moderate inducers of CYP3A4 (which increase the metabolism activity) will cause a decrease in gepant exposure and possibly decreased effectiveness. These medications should be avoided in patients with severe liver disease or end stage kidney disease such as those on dialysis.

 

Given that Ubrelvy and Nurtec ODT are of the same class, they each have their own marketing pitch to differentiate them, although the bottom line is that they are both excellent options.

 

Allergan markets Ubrelvy as quickly relieving migraine pain within 2 hours with just one dose, and that complete elimination of migraine pain with one dose is possible. Furthermore, they highlight that they provide the option of being able to repeat a 2nd dose if needed (similar to how triptans are dosed), with a higher proportion of patients achieving pain freedom 2 hours after taking the optional second dose. They also claim effective relief whether Ubrelvy was taken right away at migraine onset or within 4 hours. They currently have a savings card program which should work with commercial insurances for $10 per month, which works out to $1 per pill (10 pills per month).

 

Biohaven boasts that Nurtec ODT dissolves under or on the tongue in seconds, and starts working in minutes (15 minutes in some patients). They highlight that it does not require water or other liquids to take with the dose, so it can be taken anytime and anywhere. They also point out that pain relief and pain freedom lasts up to 48 hours for many patients, which makes sense because it has the longest half-life. They currently have a savings card program which should work with commercial insurances for $0 per month (8 pills per month).

 

DITANS

The ditans are another new class of migraine abortive, premiering with Lasmiditan (Reyvow) in January 2020 from Eli Lilly. Lasmiditan acts as a high affinity 5-HT1F (serotonin 1F) receptor agonist. The result of its action is a decrease in the release of inflammatory pain producing neurotransmitters and neuropeptides including CGRP from the trigeminal nerves during a migraine attack. These receptors are also involved in modulating other pain signals and blocking (inhibiting) other pain pathways. Notably, like the gepants, they also do not cause arterial vasoconstriction. Again, this is a tremendous benefit and another great option in patients who may not be able to use triptans due to medical contraindications such as coronary or peripheral vascular disease. Caution should be used with other serotonergic drugs given a potential for serotonin syndrome, which was reported in clinical trials.

 

In a driving study, 50 mg, 100 mg, or 200 mg doses of Lasmiditan significantly impaired subjects’ ability to drive, and more sleepiness was reported at 8 hours following a single dose compared to placebo. Therefore, patients should wait at least 8 hours between dosing and driving or operating machinery. This can certainly be a drawback in terms of being a treatment option for many patients as the goal of abortive therapy is partly to be able to maintain and restore function in order to not disrupt work, plans, etc. However, if you are in a position where this would not be an issue for you, it could certainly be a valid option to have in your migraine war chest. It should also be used with caution in combination with alcohol or other central nervous system depressants.

 

Notably, Lasmiditan is a Schedule V controlled substance compared to the other abortive options. Schedule V represents the lowest abuse potential category from the DEA. The reason is because in a human abuse potential study, doses of 100 mg, 200 mg, and a supratherapeutic dose of 400 mg were associated with statistically significantly higher “drug liking” scores than placebo, indicating possible abuse potential. However, it had statistically significantly lower “drug liking” scores compared to alprazolam 2 mg. Lasmiditan also produced adverse events of euphoria and hallucinations to a greater extent than placebo, although it was a low frequency (about 1% of patients). They currently have a savings card program which should work with commercial insurances for $0 per month (4 pills per month).

 

SUMMARY

The chart below compares and contrasts the treatment outcomes data between Rimegepant, Ubrogepant, Lasmiditan, and Sumatriptan (as representative of the triptan class since it was the first developed). The source of the data comes from the key trials of each medication, as well as some data obtained directly from the pharmaceutical companies. It’s important to note that the trials for each medication did not all include the same data point evaluations, so not all of the comparison data is available across the medications to compare. For example, the original triptan studies did not include many of the treatment outcome data points that have become more commonly used since they were developed such as 8 hour data, 2-48 hour data, most bothersome symptom, etc. Therefore, many of these data points within the columns of the different medications may be labeled by N/A (not available).

 

Overall, these are all very effective and useful medications to keep in mind for your migraine abortive war chest. They are all a welcome and much needed option for the abortive treatment of migraine. Many of the data points are fairly similar, and some data points weren’t compared, but regardless, I have highlighted some of the key differences to take note of in bold print. I hope this data can provide some guidance on some of the differences in these medications which may help to better select them based on the treatment goals, setting of use, and other patient characteristics.

 

 


Rimegepant


Ubrogepant


Lasmiditan


Sumatriptan (100 mg)


Class


Gepant


Gepant


Ditan


Triptan


Mechanism of Action


CGRP receptor antagonist


CGRP receptor antagonist


5HT1F agonist


5HT1B and 5HT1D
agonist


Available dosing


75 mg orally dissolvable
tablet


50 mg, 100 mg pill


50 mg, 100 mg, 200 mg (100
mg x 2) pill


25 mg, 50 mg, 100 mg pill;
3 mg, 4 mg, 6 mg injection; 5 mg, 10 mg, 20 mg nasal spray


Max dose per 24 hours


75 mg


200 mg


200 mg


200 mg


Pills per prescription


8


10


8


9


Dosing frequency


1 dose/24 hours


Dose can repeated
once in 2 hours; 2 doses/24 hours


1 dose/24 hours


Dose can repeated
once in 2 hours; 2 doses/24 hours


Suggested number of migraine attacks treated per 30 days


15 (however, currently also being studied as a daily preventive)


8


4


10


Time to reach statistically significant pain relief


60 minutes


60 minutes with 50 mg or
higher doses


30 minutes with 100 mg or higher doses;


60 minutes with 50 mg dose


30 minutes with 50 mg or higher doses


1 hour significant
pain relief


37%


31% (placebo)


43% (50 mg)


N/A (100 mg)


36.7% (placebo)


37.3% (50 mg)


41% (100 mg)


46% (200 mg)


30.6% (placebo)


20-35% (100 mg)


12-21% (placebo)


Differences in pain relief at 15 minutes


8%


5% (placebo)


N/A


N/A


N/A


Differences in pain relief at 30 minutes


19%


17% (placebo)


19% (50 mg)


N/A (100 mg)


20% (placebo)


15% (50 mg)


17.5% (100 mg)


19.1% (200 mg)


13.4% (placebo)


11% (100 mg)


12% (placebo)


2 hour pain relief


59%


43% (placebo)


61.7% (50 mg)


61.4% (100 mg)


48.7% (placebo)


56% (50 mg)


54-61% (100 mg)


55-61% (200 mg)


40-45% (placebo)


46-67% (100 mg)


18-44% (placebo)


2 hour pain freedom


21%


11% (placebo)


20.5% (50 mg)


21.2% (100 mg)


13% (placebo)


28% (50 mg)


28-31% (100 mg)


32-39% (200 mg)


15-21% (placebo)


22-33% (100 mg)


3-13% (placebo)


8 hour pain freedom
with 1 dose


56%


33% (placebo)


82.3% (50 mg)


82.7% (100 mg)


69.8% (placebo)


N/A


N/A


8 hour pain relief
with 1 dose


74%


56% (placebo)


92% (50 mg)


N/A (100 mg)


82% (placebo)


N/A


N/A


% of patients with 1st dose pain relief who achieved
pain freedom after 2nd dose


N/A


54.7% (50 mg/50 mg)


33.3% (50 mg/placebo)


51.6% (100 mg/100 mg)


33.3% (100 mg/placebo)


N/A


N/A


Sustained pain relief 2-48 hours


47.8%


27.7% (placebo)


31.5% (50 mg)


34% (100 mg)


17.5% (placebo)


N/A


N/A


2 hour absence of
most bothersome migraine symptom


35%


27% (placebo)


38.7% (50 mg)


37.7% (100 mg)


27.6% (placebo)


41% (50 mg)


41-44% (100 mg)


41-49% (200 mg)


30-33% (placebo)


N/A


8 hour absence of
most bothersome migraine symptom


N/A


90.9% (50 mg)


92.4% (100 mg)


77.7% (placebo)


N/A


N/A


Time to peak plasma concentration TMAX


1.5 hours


1.5 hours


1.8 hours


1.5-2.5 hours


½ life


11 hours


5-7 hours


5.7 hours


2-2.5 hours


Time to reach pharmacologically active concentration


15 minutes


Within 11 minutes


N/A


N/A


Time the pharmacologically active concentration is maintained


48 hours


12 hours


N/A


N/A


Notable side effects


Nausea


2%


0.4% (placebo)


Nausea


2% (50 mg)


4% (100 mg)


2% (placebo)


 


Somnolence/Sedation


2% (50 mg)


3% (100 mg)


1% (placebo)


Nausea


3% (50 mg)


4% (100 mg)


4% (200 mg)


2% (placebo)


 


Somnolence/Sedation


6% (50 mg)


6% (100 mg)


7% (200 mg)


2% (placebo)


 


Dizziness


9% (50 mg)


15% (100 mg)


17% (200 mg)


3% (placebo)


 


Paresthesias


3% (50 mg)


7% (100 mg)


9% (200 mg)


2% (placebo)


Widely variable, most
common: Dizziness, fatigue, paresthesias, sedation,
nausea, palpitations, anxiety, muscle tightness sensation in chest/neck/throat


Share
Read More

EVERYTHING YOU NEED TO KNOW ABOUT CBD (CANNABIDIOL) USE FOR MIGRAINE, HEADACHE, PAIN, AND OTHER CONDITIONS.

BACKGROUND

CBD is everywhere! You can buy it at the local grocery store, supplement store, gas station, video rental store, and almost anywhere else nowadays. There are hundreds of brands. Is it right for you? Will it work? How do you take it? How do you know which products are of good quality and are safe? Are there downsides? Are there side effects? Will you test positive on a drug screen? These are a few of the many questions you likely have. Our patients ask about CBD use all the time in regard to migraine and pain. So, I decided to write this blog to provide an overview and answer these burning questions you may have!

 

There have been a multitude of studies documenting the analgesic and anti-inflammatory benefits of medicinal cannabis across many chronic pain syndromes1–4, and it has been a historical treatment for headache and migraine for centuries.2,3,5–7 The vast majority of supporting evidence of cannabis and cannabinoids involves various chronic pain syndromes. These benefits are hypothesized to extend to headache disorders such as migraine given overlapping neurobiological pathways of pain. Some data suggests that cannabinoids appear to work uniquely within the inherent anatomical pathways of migraine (including serotonergic triptan pathways) and pain.1,2,5–37 Unfortunately, the majority of data supporting the use of cannabis and cannabinoids in migraine and headache disorders is based on case series, case reports, surveys and anecdotal evidence.5,6,32,33,38–57 There has been one retrospective study of cannabis use in the treatment of migraine which reported strong statistically significant findings of benefit.58 There have been only two limited prospective trials of cannabinoids containing a control group in headache disorders. One reported significant benefit in chronic daily headache associated with medication overuse headache,59 and the other reported significant benefit in both the acute and preventive treatment of chronic migraine.60

 

The endocannabinoid system is a normal and important biological system within everyone. It plays a role in many regulatory physiological processes across all organ systems, and is widely distributed throughout the central nervous system (brain and spinal cord) and peripheral nervous system (nerves outside of the spinal canal). Notably, it plays a strong role in pain pathways. This system works by the interaction of our own natural endocannabinoids turning on or turning off various endocannabinoid receptors throughout our body.

 

Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) are the two predominant cannabinoids found in cannabis (marijuana). Cannabinoids are unique to the cannabis plant, and can be thought of as the “plant equivalents” of our own endocannabinoids. So, they interact with the same endocannabinoid receptors in our body as our own endocannabinoids do. Given the growing evidence of cannabis and cannabinoids in the treatment of chronic pain and other medical conditions, in February 2019 The World Health Organization (WHO) recommended that cannabis be rescheduled and removed from the most restrictive scheduling category. In January 2017, the National Academies of Sciences, Engineering, and Medicine concluded that the use of cannabis for the treatment of pain is supported by well-controlled clinical trials and that there is substantial evidence that cannabis is an effective treatment for chronic pain in adults. In 2014, the Canadian Pain Society revised their consensus statement to recommend cannabinoids as a third-level therapy for chronic neuropathic pain based on the abundance of supporting evidence and a NNT (number needed to treat) estimated at approximately 3 (the number of patients needed to treat for 1 of them to receive benefit). So naturally, there has been a quickly growing public interest in these potential therapies for a variety of reasons, especially in pain disorders.

 

THC causes the psychoactive qualities (“high”) of cannabis. THC has been shown to be 20 times more anti-inflammatory than aspirin and 2 times as anti-inflammatory as hydrocortisone. It is also a potent anti-emetic (anti-nausea), which is why there are two FDA-approved synthetic THC medications for chemotherapy related nausea and vomiting (Dronabinol, Nabilone). The existing literature and research on the treatment of pain have primarily studied cannabis itself with its variable and often undefined combinations of THC, CBD, other cannabinoids, terpenes, and other constituents. The medicinal benefits of cannabis are suspected to be from the “entourage effects” from synergistic action (working together) between various cannabinoids such as THC and CBD, and terpenes.1,61

 

In contrast to THC, CBD is non-intoxicating (no “high”). CBD has been shown to be several hundred more times anti-inflammatory than aspirin. Greater than 65 molecular receptor targets and greater than 80 mechanisms of action have been identified. There have been scientific, animal models, and very limited human clinical trials documenting its anti-inflammatory and analgesic (pain-relieving) properties. However, there are no high-quality research studies to date evaluating isolated pure CBD in any pain, migraine, or other headache disorders. So, it is unclear how much benefit CBD in isolation provides outside of the presumed entourage effects that it contributes to.

 

In November 2017, The World Health Organization (WHO) concluded that CBD exhibits no evidence for abuse or dependence potential, and that there is no evidence of public health related problems associated with its use. In January 2018, the World Anti-Doping Agency (WADA) removed CBD from their prohibited list, no longer banning use by athletes. In December 2018, the Agriculture Improvement Act (Farm Bill) was signed into law. This legalized the agricultural growth and use of hemp (cannabis strains containing 0.3% THC or less) and hemp derivatives such as CBD. The Farm Bill also removed hemp from the Controlled Substances Act, making it no longer an illegal substance under federal law. To review, up until the Farm Bill was passed, any form of cannabis or cannabis derivatives (including CBD) have been federally illegal since the Controlled Substance Act of 1970, which is when cannabis was changed to a Schedule 1 drug of which it has remained since. Therefore, it is important to remember that cannabis chemovars (strains) and CBD oils with greater than 0.3% THC are still considered marijuana, and thus are illegal federally, require a medical marijuana card for use, and are illegal to cross state lines with. In May 2019, TSA began to allow travel with CBD products containing 0.3% or less of THC.

 

Thus, the use of CBD products has been exponentially increasing for a wide variety of uses, including pain and headache, and anecdotal benefits are commonly reported. Although the various CBD companies provide guidance on dosing, there are no standardized dosing guidelines on optimal dosing, and strengths and frequencies used are widely variable. Some cannabinoid experts feel that most over the counter bought CBD products have too low of milligram content to have true physiological effects based on the high dose needed to enter the central nervous system through the blood-brain barrier. On the other hand, some suggest that “micro-dosing” with the lower CBD doses found in many products is enough to help replace endocannabinoid deficiencies. These dosing uncertainties have yet to be clarified and confirmed scientifically. Pure isolated CBD has never been evaluated prospectively in a randomized controlled trial in the treatment of migraine, headache, or pain to date. So, its use in the treatment of pain disorders including migraine remains primarily anecdotal at this time, but we anticipate future trials will provide more objective scientific data. The FDA is currently gathering and assessing available objective scientific data in anticipation of providing general dosing guidelines and recommendations of use.

 

SAFETY AND SIDE EFFECTS

CBD is generally very well tolerated, and pure CBD is not felt to be sedating. Actually, low to moderate doses are often more alerting.62 Early anecdotal literature involved CBD with sedating components (full spectrum products) including trace THC, other cannabinoids, and terpenes. For example, myrcene is a terpene often attributed to the “couch lock” phenomenon of some cannabis chemovars (strains). So, the sedation was not from the CBD, but actually from these other associated components. More recent studies (up to 600 mg pure CBD) have reported no sedative side effects.

 

There is one FDA approved form of CBD called Epidiolex, and these trials are what most of the known CBD safety data comes from. This is a purified cannabis derived form of CBD which was FDA approved in June of 2018 for some forms of refractory pediatric epilepsies.63 Dosing ranges from 5 to 20 milligrams per kilogram body weight total daily dose, which is divided between a morning and evening dose. These does are significantly higher than any form of over the counter non-prescription forms of CBD commonly sold. CBD is metabolized (broken down) in the liver. So, patients with liver disease many need to be more cautious with their dosing. In the Epidiolex studies, there was a slight elevation in liver enzymes in some patients. However, the vast majority of these liver enzyme elevations were in patients using the highest 20 milligram per kilogram daily dose and particularly when CBD was also being used with other anti-seizure medications, especially valproate and clobazam. This risk was much lower in patients outside of these categories. None the less, caution should be used when CBD is used with other medications that are metabolized by the same liver enzyme systems to avoid causing high or low levels of other medications. For example, high doses of CBD (such as those in the Epidiolex trials) may increase levels of certain medications such as warfarin, macrolide antibiotics, calcium channel blocker blood pressure medications, benzodiazepines, cyclosporine immunosuppressants, sildenafil, antihistamines, antidepressants, antipsychotics, antiretrovirals (such as HIV meds), and some antiseizure medications (such as clobazam), to name a few. With that said, the more commonly used doses bought over the counter are nowhere near the high doses of CBD in Epidiolex, so the clinical relevance of CBD use with these liver interactions is unclear at much lower doses. For example, Sativex studies (a whole plant CBD rich sublingual spray) found no interactions with liver enzyme systems with 40 mg CBD. The bottom line is that there are still many uncertainties so it is better to use caution until future studies can help clarify these questions.

 

In the Epidiolex studies, the most common adverse effects in a minority of patients were somnolence, lethargy, drowsiness, fatigue, diarrhea, decreased appetite, and nausea/vomiting. However, these side effects were in patients who were also using other anti-seizure medications (virtually all of which have drowsiness as a universal side effect). In addition, Epidiolex is about 98% pure CBD, but still contains 0.15% or less of THC, traces other cannabinoids and terpenes at a dose of 10 milligrams per kilogram per day. Therefore, these side effects are most likely to be related to these other factors rather than from the CBD content itself.

 

DIFFERENCES IN CBD PRODUCT TYPE, QUALITY, AND SAFETY

CBD has a wide variety of formulations from oral (primarily oils), tinctures, vaporization, and topical creams. Full spectrum or “whole plant” oral CBD products are the most popular. They are most likely to provide the “entourage effects” of cannabis. They contain everything the cannabis plant contains including CBD, trace THC (should be ≤0.3% per Federal law), terpenes, and flavonoids. Broad spectrum CBD products can be thought of as full spectrum without the trace THC. CBD isolate products consist of CBD isolated from all plant contents, without trace THC. It is important to know that use of these products may have a risk of testing positive on a marijuana drug test (which tests for THC). Although this risk is very low and can also be influenced by differing metabolisms between people, it is still a risk to be aware of. The risk of this correlates with the presence of trace THC and this risk would be highest in full spectrum, followed by broad spectrum, followed by CBD isolate products. Lastly, there is a misconception that CBD converts into THC in the human body. This is not true, and there is no evidence of this happening in the human body, and actually more evidence that it does not happen.62 This notion was based on an old lab-based experiment which involved acids and conditions which are not reflective of normal human physiology.

 

CBD products chosen should include independent 3rd party laboratory testing for content and quality. The reason is because there are so many CBD companies and products, and many of them are of low quality. In 2017, there was a study published in the Journal of the American Medical Association (JAMA) which evaluated 84 CBD products analyzed from 31 different companies, including 40 oils, 24 vaporization liquids, and 20 tinctures.64 Only about 30% of the products were labeled accurately with what they claimed to contain, while about 70% of the products were inaccurately labeled based on actual CBD content (43% had higher than advertised CBD, 26% had lower than advertised CBD). In addition, 21.4% had high levels of THC, above legal limits.

 

Another study looked at 13 CBD products tested across Los Angeles and New Jersey.65 Five of them (almost half) had no traceable CBD, and only 1 had an accurately advertised amount of CBD! Two had high THC (3 mg), 1 CBD gel cap product was contaminated with a deadly strain of E. Coli (shiga toxin), and 2 had potentially dangerous levels of ethanol.

 

In 2017, 5 patients in Utah developed seizures, confusion, coma, and hallucinations with a labeled “CBD” product, and 52 patients were harmed through 2018 with this product. This “CBD” product actually contained a synthetic cannabinoid and no CBD at all. The International Cannabis and Cannabinoid Institute in the Czech Republic assessed 29 CBD products and found that 69% exceeded the recommended levels of polycyclic aromatic hydrocarbons. These are known carcinogens and genotoxic mutagens according to International Agency for Research on Cancer. Unregulated CBD products may contain pesticides or heavy metal contamination as well.

 

CONCLUSIONS

In summary, CBD shows analgesic and anti-inflammatory effects in scientific and animal models, but there is limited data involving human studies. However, this should be changing soon now that CBD is federally legal with easier access to research. None the less, there may be a wide variety of tremendous therapeutic potential to be harnessed. Non-FDA approved forms of CBD may have inconsistent levels of CBD, THC, and contamination. Therefore, non-FDA approved forms of CBD should be from companies using independent 3rd-party lab analysis to confirm quality and contents until FDA regulations are available. It is important to know that CBD involves drug interactions with some common liver enzyme metabolism systems, but dosing threshold to interfere with other medications being metabolized in these same pathways is unclear and needs to be further clarified.

 

REFERENCES

 

  1. Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache J Head Face Pain. 2018;58(7):1139-1186. doi:10.1111/head.13345
  2. Baron EP. Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It’s Been …. Headache J Head Face Pain. 2015;55(6):885-916. doi:10.1111/head.12570
  3. Russo EB. Cannabinoids in the management of difficult to treat pain. Ther Clin Risk Manag. 2008;4(1):245-259.
  4. Baron EP, Lucas P, Eades J, Hogue O. Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J Headache Pain. 2018;19(1):1-28. doi:10.1186/s10194-018-0862-2
  5. Russo E. Hemp for headache: an in-depth historical and scientific review of cannabis in migraine treatment. J Cannabis Ther. 2001;1:21-92.
  6. Russo E. Cannabis for migraine treatment: the once and future prescription? An historical and scientific review. Pain. 1998;76(1-2):3-8.
  7. Lochte BC, Beletsky A, Samuel NK, Grant I. The Use of Cannabis for Headache Disorders. Cannabis cannabinoid Res. 2017;2(1):61-71. doi:10.1089/can.2016.0033 [doi]
  8. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev. 2011;12(10):570-584. doi:10.1038/nrn3057 [doi]
  9. Greco R, Gasperi V, Sandrini G, et al. Alterations of the endocannabinoid system in an animal model of migraine: evaluation in cerebral areas of rat. Cephalalgia. 2010;30(3):296-302. doi:10.1111/j.1468-2982.2009.01924.x [doi]
  10. Haj-Dahmane S, Shen RY. Endocannabinoids suppress excitatory synaptic transmission to dorsal raphe serotonin neurons through the activation of presynaptic CB1 receptors. J Pharmacol Exp Ther. 2009;331(1):186-196. doi:10.1124/jpet.109.153858 [doi]
  11. Palazzo E, de Novellis V, Petrosino S, et al. Neuropathic pain and the endocannabinoid system in the dorsal raphe: pharmacological treatment and interactions with the serotonergic system. Eur J Neurosci. 2006;24(7):2011-2020. doi:EJN5086 [pii]
  12. Voth EA, Schwartz RH. Medicinal applications of delta-9-tetrahydrocannabinol and marijuana. Ann Intern Med. 1997;126(10):791-798.
  13. Akerman S, Kaube H, Goadsby PJ. Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J Pharmacol Exp Ther. 2004;309(1):56-63. doi:10.1124/jpet.103.059808 [doi]
  14. Akerman S, Holland PR, Goadsby PJ. Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther. 2007;320(1):64-71. doi:jpet.106.106971 [pii]
  15. Kelly S, Chapman V. Selective cannabinoid CB1 receptor activation inhibits spinal nociceptive transmission in vivo. J Neurophysiol. 2001;86(6):3061-3064.
  16. Meng ID, Johansen JP. Antinociception and modulation of rostral ventromedial medulla neuronal activity by local microinfusion of a cannabinoid receptor agonist. Neuroscience. 2004;124(3):685-693. doi:10.1016/j.neuroscience.2003.10.001 [doi]
  17. Meng ID, Manning BH, Martin WJ, Fields HL. An analgesia circuit activated by cannabinoids. Nature. 1998;395(6700):381-383. doi:10.1038/26481 [doi]
  18. Palazzo E, Marabese I, de Novellis V, et al. Metabotropic and NMDA glutamate receptors participate in the cannabinoid-induced antinociception. Neuropharmacology. 2001;40(3):319-326. doi:S002839080000160X [pii]
  19. Finn DP, Jhaveri MD, Beckett SR, et al. Effects of direct periaqueductal grey administration of a cannabinoid receptor agonist on nociceptive and aversive responses in rats. Neuropharmacology. 2003;45(5):594-604. doi:S0028390803002351 [pii]
  20. Maione S, Bisogno T, de Novellis V, et al. Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 re. J Pharmacol Exp Ther. 2006;316(3):969-982. doi:jpet.105.093286 [pii]
  21. de Novellis V, Mariani L, Palazzo E, et al. Periaqueductal grey CB1 cannabinoid and metabotropic glutamate subtype 5 receptors modulate changes in rostral ventromedial medulla neuronal activities induced by subcutaneous formalin in the rat. Neuroscience. 2005;134(1):269-281. doi:S0306-4522(05)00334-9 [pii]
  22. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and “triptan” receptors: implications in migraine. J Neurosci. 2013;33(37):14869-14877. doi:10.1523/JNEUROSCI.0943-13.2013 [doi]
  23. Knight YE, Goadsby PJ. The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience. 2001;106(4):793-800. doi:S0306452201003037 [pii]
  24. Knight YE, Bartsch T, Kaube H, Goadsby PJ. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci. 2002;22(5):RC213-8P_$Fhttp://www.ncbi.nlm.nih. doi:20026167 [pii]
  25. Knight YE, Bartsch T, Goadsby PJ. Trigeminal antinociception induced by bicuculline in the periaqueductal gray (PAG) is not affected by PAG P/Q-type calcium channel blockade in rat. Neurosci Lett. 2003;336(2):113-116. doi:S0304394002012508 [pii]
  26. Juhasz G, Lazary J, Chase D, et al. Variations in the cannabinoid receptor 1 gene predispose to migraine. Neurosci Lett. 2009;461(2):116-120. doi:10.1016/j.neulet.2009.06.021 [doi]
  27. Nyholt DR, Morley KI, Ferreira MA, et al. Genomewide significant linkage to migrainous headache on chromosome 5q21. Am J Hum Genet. 2005;77(3):500-512. doi:S0002-9297(07)63030-4 [pii]
  28. Bartsch T, Knight YE, Goadsby PJ. Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception. Ann Neurol. 2004;56(3):371-381. doi:10.1002/ana.20193 [doi]
  29. Vaughan CW, McGregor IS, Christie MJ. Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro. Br J Pharmacol. 1999;127(4):935-940. doi:10.1038/sj.bjp.0702636 [doi]
  30. Vaughan CW, Connor M, Bagley EE, Christie MJ. Actions of cannabinoids on membrane properties and synaptic transmission in rat periaqueductal gray neurons in vitro. Mol Pharmacol. 2000;57(2):288-295.
  31. Greco R, Mangione AS, Sandrini G, Nappi G, Tassorelli C. Activation of CB2 receptors as a potential therapeutic target for migraine: evaluation in an animal model. J Headache Pain. 2014;15:14. doi:10.1186/1129-2377-15-14 [doi]
  32. Volfe Z, Dvilansky A, Nathan I. Cannabinoids block release of serotonin from platelets induced by plasma from migraine patients. Int J Clin Pharmacol Res. 1985;5(4):243-246.
  33. Greco R, Gasperi V, Maccarrone M, Tassorelli C. The endocannabinoid system and migraine. Exp Neurol. 2010;224(1):85-91. doi:10.1016/j.expneurol.2010.03.029 [doi]
  34. Mailleux P, Vanderhaeghen JJ. Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons. Neurosci Lett. 1992;148(1-2):173-176.
  35. Moldrich G, Wenger T. Localization of the CB1 cannabinoid receptor in the rat brain. An immunohistochemical study. Peptides. 2000;21(11):1735-1742. doi:S0196-9781(00)00324-7 [pii]
  36. Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2008;29(2):192-200. doi:NEL290208R02 [pii]
  37. Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2004;25(1-2):31-39. doi:NEL251204R02 [pii]
  38. Robbins MS, Tarshish S, Solomon S, Grosberg BM. Cluster attacks responsive to recreational cannabis and dronabinol. Headache. 2009;49(6):914-916. doi:10.1111/j.1526-4610.2009.01344.x [doi]
  39. Donnet A, Lanteri-Minet M, Guegan-Massardier E, et al. Chronic cluster headache: a French clinical descriptive study. J Neurol Neurosurg Psychiatry. 2007;78(12):1354-1358. doi:jnnp.2006.112037 [pii]
  40. Leroux E, Taifas I, Valade D, Donnet A, Chagnon M, Ducros A. Use of cannabis among 139 cluster headache sufferers. Cephalalgia. 2013;33(3):208-213. doi:10.1177/0333102412468669 [doi]
  41. Evans RW, Ramadan NM. Are cannabis-based chemicals helpful in headache? Headache. 2004;44(7):726-727. doi:10.1111/j.1526-4610.2004.04133C.x [doi]
  42. Consroe P, Musty R, Rein J, Tillery W, Pertwee R. The perceived effects of smoked cannabis on patients with multiple sclerosis. Eur Neurol. 1997;38(1):44-48.
  43. Mackenzie S. Remarks on the value of Indian hemp in the treatment of a certain type of headache. Br Med J. 1887;1:97-98.
  44. Nunberg H, Kilmer B, Pacula RL, Burgdorf J. An Analysis of Applicants Presenting to a Medical Marijuana Specialty Practice in California. J Drug Policy Anal. 2011;4(1)://www.ncbi.nlm.nih. doi:1 [pii]
  45. Donovan M. On the physical and medicinal qualities of Indian hemp (Cannabis indica); with observations on the best mode of administration, and cases illustrative of its powers. Dublin J Med Sci. 1845;26:368-461.
  46. Reynolds JR. On some of the therapeutical uses of Indian hemp. Arch Med. 1868;2:154-160.
  47. Waring EJ. Practical Therapeutics. Philadelphia: Lindsay & Blakiston; 1874.
  48. Ringer S. A Handbook of Therapeutics. London: H.K. Lewis; 1886.
  49. Hare HA. Clinical and physiological notes on the action of Cannabis indica. There Gaz. 1887;11:225-228.
  50. Suckling CW. On the therapeutic value of Indian hemp. Br Med J. 1891;2:11-12.
  51. Mikuriya TH. Chronic Migraine Headache: Five Cases Successfully Treated with Marinol and/or Illicit Cannabis.Berkeley, CA: Schaffer Library of Drug Policy; 1991.
  52. Noyes Jr R, Baram DA. Cannabis analgesia. Compr Psychiatry. 1974;15(6):531-535.
  53. Schnelle M, Grotenhermen F, Reif M, Gorter RW. Results of a standardized survey on the medical use of cannabis products in the German-speaking area. Forsch Komplementarmed. 1999;6 Suppl 3:28-36. doi:57154 [pii]
  54. el-Mallakh RS. Marijuana and migraine. Headache. 1987;27(8):442-443.
  55. Grinspoon L, Bakalar JB. Marihuana: The Forbidden Medicine. New Haven, CT: Yale University; 1993.
  56. el-Mallakh RS. Migraine headaches and drug abuse. South Med J. 1989;82(6):805.
  57. Gorji A. Pharmacological treatment of headache using traditional Persian medicine. Trends Pharmacol Sci. 2003;24(7):331-334. doi:S0165-6147(03)00164-0 [pii]
  58. Rhyne DN, Anderson SL, Gedde M, Borgelt LM. Effects of Medical Marijuana on Migraine Headache Frequency in an Adult Population. Pharmacotherapy. 2016;36(5):505-510. doi:10.1002/phar.1673 [doi]
  59. Pini LA, Guerzoni S, Cainazzo MM, et al. Nabilone for the treatment of medication overuse headache: results of a preliminary double-blind, active-controlled, randomized trial. J Headache Pain. 2012;13(8):677-684. doi:10.1007/s10194-012-0490-1 [doi]
  60. Nicolodi M, Sandoval V, Terrine A. Therapeutic use of cannabinoids – Dose Finding, Effects, and Pilot Data of Effects in Chronic Migraine and Cluster Headache. Abstract presentation at 3rd Congress of the European Academy of Neurology (EAN), Amsterdam, 6/24/17. In: 3rd Congress of the European Academy of Neurology (EAN), Amsterdam 6/24/17. Amsterdam.
  61. Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol. 2011;163(7):1344-1364. doi:10.1111/j.1476-5381.2011.01238.x [doi]
  62. Russo EB. Cannabidiol Claims and Misconceptions. Trends Pharmacol Sci. 2017;38(3):198-201. doi:10.1016/j.tips.2016.12.004
  63. Pharma G. Epidiolex (Cannabidiol) Prescribing Information. Carlsbad, CA; 2018.
  64. Bonn-Miller MO, Loflin MJE, Thomas BF, Marcu JP, Hyke T, Vandrey R. Labeling Accuracy of Cannabidiol Extracts Sold Online. JAMA. 2017;318(17):1708-1709. doi:10.1001/jama.2017.11909
  65. CBD Craze: FOX 11 and Dr. Oz puts these popular products to the test. https://www.fox5dc.com/news/cbd-craze-fox-11-and-dr-oz-puts-these-popular-products-to-the-test.

 

 

Share
Read More

HOW TO BREAK FREE FROM THE VICIOUS CYCLE OF REBOUND HEADACHE (MEDICATION OVERUSE HEADACHE).

 

 

Chronic daily headache being endlessly fueled and driven by rebound headache (medication overuse headache; MOH) is one of the most common headache disorders that headache specialists encounter every day in clinic. Chronic daily headache refers to 15-30 days of headache per month on average for 3 or more months. The most common cause of chronic daily headache is typically chronic migraine, in which at least 8 days out of those 15-30 days per month have migrainous characteristics (throbbiness, throbby, pounding, pulsating pain with nausea and/or sensitivity to light (photophobia) and sound (phonophobia)).

 

Patients that have a prior or current history of headaches such as migraine or tension-type headaches tend to be highly susceptible to developing rebound headache/MOH when certain medications are being used too frequently, but it predominantly occurs in patients with a history of migraine. The overused medications may be actively used for headache (usually the case), but they may also be used for something entirely different such as back pain, nerve pain, arthritis pain, or anything else. The reason these medications are being used doesn’t matter as much as the frequency that they are being used. When certain medications are used too frequently, it will inadvertently cause the patient’s prior migraines to emerge and begin to increase in frequency and severity until it eventually evolves over time into a chronic daily headache with worsening severity. Once someone is stuck in the rut of chronic daily headache from chronic migraine and rebound headache/MOH, it can be very challenging to pull them back out of this cycle, and the rebound/MOH must be eliminated before improvement can occur. In addition, preventative medications (daily medicines used to lessen the frequency and/or severity of headaches) and abortive (“as-needed” at headache onset) pain medications generally become less effective in the setting of rebound/MOH.

 

Research has shown that medication overuse can transform episodic migraine (0-15 days of headache per month) to chronic migraine (15-30 days of headache per month) if the following medications are used at the following frequencies:

Greater than 10 days per month for 2 or more consecutive months of over the counter (OTC) pain medications (Tylenol, Excedrin, Acetaminophen, Aleve, Naproxen, Motrin, Advil, Ibuprofen, or other non-steroidal anti-inflammatories (NSAIDs)).

Greater than 10 days per month for 2 or more consecutive months of triptans (Sumatriptan, Rizatriptan, Zolmitriptan, Almotriptan, Frovatriptan, Naratriptan, Eletriptan).

Greater than 8 days per month for 2 or more months of any narcotic, opioid, or opiate medication (Vicodin, Norco, Hydrocodone, Oxycodone, Oxycontin, Percocet, Tramadol, Ultram, Ultracet, Morphine, Codeine, Dilaudid, etc.).

Greater than 5 days per month for 2 or more months of any butalbital containing medication (Fioricet, Fiorinal, Esgic); (also known as “the headache specialist’s worst enemy”).

 

The chronic daily headaches will never improve until a weaning detoxification from the overused medications happens. It can take up to 6-12 weeks for improvement to start to occur beginning after there is a consistent detoxification and minimizing use of the offending medication. This time-frame may vary depending on the medicine used, duration of use, frequency of use, and quantity of use. It is also important to know that as the patient is weaning and detoxing from the overused medications, headaches will commonly get worse (rebound) before they get better. The hardest part of breaking out of this cycle can be getting through that rebound hump. Unfortunately, there is not typically a “quick fix” for this scenario.

 

This process of weaning and detoxification is generally accompanied by adjusting preventative daily headache medications by the patient’s physician. A general slow wean off of overused medications is seen below, and can be adjusted based on quantity and frequency of the overused medication:

Week 1: If using daily, decrease to half of the amount of medication typically used daily (for example, if taking Tylenol 4 times per day, decrease to 2 times per day, etc.).
Week 2: Use no more than 6 days per week.
Week 3: Use no more than 5 days per week.
Week 4: Use no more than 4 days per week.
Week 5: Use no more than 3 days per week.
Week 6: Use no more than 2 days per week.
Week 7: Use no more than 1 day per week, or less.

 

Some people prefer to get through this weaning process faster rather than a slow wean such as this. Some choose to stop their overused medications “cold turkey” to expedite the process. This should be discussed with your physician because it can be medically unsafe to abruptly stop some medications such as fioricet, fiorinal, butalbital, opioids and opiates which can result in seizures, irregular heart rhythms, blood pressure changes, or other withdrawal syndromes. A “bridging” medication to help “bridge” out of this cycle is often used, or provided as a rescue to save for use during a slow wean to take if the rebound headache becomes intolerable. These bridging rescue medications may include a course of steroids, NSAIDs, IV infusions, or many other options depending on what medicine is being weaned and other medical conditions present. The bottom line is that it can be a painful, frustrating, and challenging process to pull out of a rebound/MOH cycle. So hang in there and stick with it because once you successfully get out of this rut, you’ll be happy you did!

Share
Read More

NOT ALL TRIPTANS ARE CREATED EQUAL. HOW TO FINE-TUNE WHICH WILL BE MOST EFFECTIVE FOR YOU.

 

Since 1992, the triptans have been the first and only migraine specific abortive medications available up until 2020 when two new classes of migraine specific abortive medications (gepants, ditans) have become available (will be detailed in a separate blog).

 

The first triptan developed was sumatriptan in 1991 and since that time there have been a total of 8 triptan options to choose from. They work by activating (agonist) the serotonin sub-receptor 5-HT1B. The result of activating this receptor is that it helps to constrict (narrow) the dilated inflamed pain-producing meningeal blood vessels which occurs during a migraine attack. The 5-HT1B receptors are also present in the brainstem, and likely play a role in modulating the electrical event of a migraine. Triptans also work by activating (agonist) the serotonin sub-receptor 5-HT1D. The result of activating this receptor is that they stop the trigeminal nerves from releasing a variety of inflammatory proteins around the brain and blood vessels which normally leads to pain during a migraine attack. This also interferes with normal pain processing between the brainstem and the brain (helps to block this electrical transmission), and it helps to block the nausea and vomiting centers in the brainstem, which limits those symptoms.

 

Triptans are all similar in mechanism of action. However, there are many differences which allow them to be tailored and fine-tuned towards different types of migraine characteristics, as discussed below. This is a very important clinical point that is almost always overlooked by most physicians prescribing these medications if they are not headache specialists. Tailoring triptans to specific migraine characteristics can make a dramatic difference in its effectiveness since triptans are not all one in the same medication. The information below can be discussed with your doctor to hopefully get a better response to your triptan therapy.

 

TRIPTAN OPTIONS:
-Sumatriptan: oral, subcutaneous injection, needle-less subcutaneous injection, nasal spray, breath-powered intranasal delivery system
-Zolmitriptan: oral, orally dissolvable tablet, nasal spray
-Rizatriptan: oral, orally dissolvable tablet
-Almotriptan: oral
-Eletriptan: oral
-Sumatriptan/Naproxen: oral
-Frovatriptan: oral
-Naratriptan: oral

 

GROUP 1 TRIPTANS:
-Faster onset of action, higher potency (thus can have higher side effect potential), tend to have a higher 24-hour migraine recurrence
-Sumatriptan, Sumatriptan/Naproxen, Zolmitriptan, Rizatriptan, Almotriptan, Eletriptan

 

GROUP 2 TRIPTANS:
-Slower onset of action, lower potency (thus often have lower side effect potential), lower 24-hour migraine recurrence since the duration of action is longer:
-Frovatriptan, Naratriptan

 

FINE-TUNING YOUR TRIPTAN CHOICE: Remember the mnemonic CORN, and this will help to narrow down the best triptan to consider:

Contraindications
Onset to peak pain
Recurrence of migraine after treatment
Nausea and vomiting severity

Contraindications: This is not an exhaustive list, but are the most common. Your doctor should be well aware of when triptans should not be used.
-Known vascular disease (coronary artery disease, peripheral vascular disease, history of stroke)
-Vascular risk factors (poorly controlled hypertension, hyperlipidemia, diabetes, smoking, premature family history of coronary artery disease (men less than age 55, women less than age 65), postmenopausal women, etc.
-Kidney or liver failure
-Prinz-Metal angina

 

Onset to migraine peak pain:
-Group 1 triptan (quicker onset) is generally much more useful than a Group 2 triptan (slower onset).
-A subcutaneous injection or nasal spray triptan will typically be most helpful if:
-Patient wakes with migraine already ongoing (waking migraine)
-Migraine hits its peak pain level within 30 minutes or so

 

Return of migraine after treatment:
-If migraine recurrence occurs within 24 hours (for example it goes away with the triptan, but keeps returning later in the day or the next day), or the migraine is usually multiple consecutive days long (such as menstrual migraine):
-Combine the 1st dose of the triptan with an NSAID (such as Naproxen)
-Use a group 2 triptan (Naratriptan vs. Frovatriptan)

 

Nausea and vomiting severity:
-If nausea and vomiting occur early in the attack, or are severe to where it is hard to keep a pill down without vomiting it back up:
-A subcutaneous injection or nasal spray triptan should be used.
-Of note, dissolvable triptan tablets are still absorbed by the gastrointestinal tract, not sublingually. So, vomiting will still make this route ineffective, similar to a regular pill.

 

TRIPTAN PEARLS IN FURTHER FINE-TUNING TRIPTAN CHOICES:

Sumatriptan:
-Highest potency (in subcutaneous form) and quickest onset (subcutaneous > nasal spray) of triptans
-Greatest flexibility is dosing route options

Rizatriptan:
-Fastest onset of oral triptans
-Greatest likelihood of 2h pain-free and sustained pain-free response
-Propranolol increases its serum concentration, so 5mg per dose should be if used together

Zolmitriptan:
-Most likely to treat persistent headache when 1st dose fails

Almotriptan:
-The group 1 triptan with the least side effects

Eletriptan:
-Highest potential for drug interactions. Decrease dosage with CYP3A4 drugs such as macrolides, fungal, HIV, etc.

Naratriptan:
-The “gentle triptan” with the least side effects given its slower onset of action
-Low 24 hour migraine recurrence rate
-Good choice to give shortly prior to an expected and known migraine trigger (menstruation, air travel, etc.)
-Does not have monoamine oxidase metabolism, so it can be given with MAOI (as can Eletriptan and Frovatriptan)

Frovatriptan:
-Low side effect potential given its slower onset of action
-Longest half life
-Low 24 hour migraine recurrence rate
-Good choice to give shortly prior to an expected and known migraine trigger (menstruation, air travel, etc.)

 

CONCLUSIONS:
The triptans were and have been a game changer for millions of migraine patients in aborting migraine attacks. Using the highest available triptan dose is also generally recommended to see the full effect. We see many patients who have “failed triptans”, but on further history they were put on very low doses (such as 25 mg sumatriptan, when 100 mg is the standard dose). Even so, about 25% of migraineurs do not respond to triptans, only 1/3rd are pain-free at 2 hours, and only 17-25% remain pain-free at 24 hours. Therefore, although the majority respond well to triptans, not everyone does. Luckily, there are other medication options including two brand new classes of migraine abortive medications (gepants, ditans) which have become available in 2020 and will be detailed in a separate blog.

Share
Read More